题目内容
12.若$sin({\frac{π}{3}-α})=\frac{1}{3}$,则$cos({\frac{π}{3}+2α})$=( )| A. | $\frac{7}{9}$ | B. | $\frac{2}{3}$ | C. | $-\frac{2}{3}$ | D. | $-\frac{7}{9}$ |
分析 由已知利用诱导公式可求cos(α+$\frac{π}{6}$)=$\frac{1}{3}$,进而利用二倍角的余弦函数公式即可计算得解.
解答 解:∵$sin({\frac{π}{3}-α})=\frac{1}{3}$=cos(α+$\frac{π}{6}$),
∴$cos({\frac{π}{3}+2α})$=cos[2(α+$\frac{π}{6}$)]=2cos2(α+$\frac{π}{6}$)-1=2×$\frac{1}{9}$-1=-$\frac{7}{9}$.
故选:D.
点评 本题主要考查了诱导公式,二倍角的余弦函数公式在三角函数化简求值中的应用,考查了转化思想,属于基础题.
练习册系列答案
相关题目
11.M={x∈R|x≥2},a=π,则下列四个式子①a∈M;②{a}∈M;③a⊆M;④{a}∩M={π},其中正确的是( )
| A. | ①② | B. | ①④ | C. | ②③ | D. | ①③ |
3.
飞机的航线和山顶在同一个铅垂直平面内,已知飞机的高度为海拔15000m,速度为1000km/h,飞行员先看到山顶的俯角为18°,经过108s后又看到山顶的俯角为78°,则山顶的海拔高度为( )
| A. | (15-18$\sqrt{3}$sin18°cos78°)km | B. | (15-18$\sqrt{3}$sin18°sin78°)km | ||
| C. | (15-20$\sqrt{3}$sin18°cos78°)km | D. | (15-20$\sqrt{3}$sin18°sin78°)km |
20.已知双曲线$\frac{{x}^{2}}{25}-\frac{{y}^{2}}{9}$=1的左右焦点分别为F1,F2,若双曲线左支上有一点M到右焦点F2距离为18,N为F2中点,O为坐标原点,则|NO|等于( )
| A. | $\frac{2}{3}$ | B. | 1 | C. | 2 | D. | 4 |
7.若函数f(x)=ae-x-ex为奇函数,则f(x)<e-$\frac{1}{e}$的解集为( )
| A. | (-∞,0) | B. | (-∞,2) | C. | (2,+∞) | D. | (0,+∞) |
1.如果复数在z=$\frac{3-i}{2+i}$,则|z|等于( )
| A. | $\frac{\sqrt{2}}{2}$ | B. | $\sqrt{2}$ | C. | 2$\sqrt{2}$ | D. | 2 |