题目内容

已知等差数列{an}的公差d>0,且a2,a5是方程x2-12x+27=0的两根,数列{bn}的前n项和为Tn,且满足b1=3,bn+1=2Tn+3(n∈N*).
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)设数列{cn}满足,cn=
an
bn
,求数列{cn}的前n项和Mn
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(Ⅰ)由韦达定理求出a2=3,a5=9,由等差数列通项公式求出首项与公差,由此能求出数列{an}的通项公式;由b1=3,bn+1=2Tn+3,得bn+1=3bn,n≥2,由此能求出数列{bn}的通项公式.
(Ⅱ)cn=
an
bn
=
2n-1
3n
,由此利用错位相减法能求出数列{cn}的前n项和Mn
解答: 解:(Ⅰ)∵等差数列{an}的公差d>0,且a2,a5是方程x2-12x+27=0的两根,
a2+a5=12
a2a5=27
,解得a2=3,a5=9,或a2=9,a5=3(∵d>0,∴舍去)
a1+d=3
a1+4d=9
,解得a1=1,d=2,
∴an=1+(n-1)×2=2n-1.n∈N*
∵b1=3,bn+1=2Tn+3(n∈N*),①
∴bn=2Tn-1+3(n∈N*),②
两式相减并整理,得bn+1=3bn,n≥2,
bn=3n,n∈N*
(Ⅱ)cn=
an
bn
=
2n-1
3n

Mn=
1
3
+
3
32
+…+
2n+1
3n
,①
1
3
Mn=
1
32
+
3
33
+…+
2n-1
3n+1
,②
2
3
Mn=
1
3
+
2
32
+
2
33
+…+
2
3n
-
2n-1
3n+1

=
1
3
+
2
9
(1-
1
3n-1
)
1-
1
3
-
2n-1
3n+1

=
2
3
-
2n+2
3n+1

Mn=1-
n+1
3n
点评:本题考查数列的通项公式的求法,考查数列的前n项和的求法,解题时要认真审题,注意错位相减法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网