题目内容

如图,一简单几何体ABCDE的一个面ABC内接于圆O,G、H分别是AE、BC的中点,AB是圆O的直径,四边形DCBE为平行四边形,且DC⊥平面ABC.
(Ⅰ)证明:GH∥平面ACD;
(Ⅱ)若AC=BC=BE=2,求二面角O-CE-B的余弦值.
考点:用空间向量求平面间的夹角,直线与平面平行的判定,二面角的平面角及求法
专题:空间角
分析:(Ⅰ)连结GO,OH,证明GO∥平面ACD,OH∥平面ACD,利用平面与平面平行的判定定理证明平面GOH∥平面ACD.然后证明GH∥平面ACD.
(Ⅱ)以CB为x轴,CB为y轴,CD为z轴,建立如图所示的直角坐标系,求出C,B,A(,O,E的坐标,平面BCE的法向量
m
,平面OCE的法向量
n
.二面角O-CE-B是锐二面角,记为θ,利用空间向量的数量积求解cosθ即可.
解答: 解:(Ⅰ)证明:连结GO,OH
∵GO∥AD,OH∥AC…(2分)
∴GO∥平面ACD,OH∥平面ACD,又GO交HO于O…(.4分)
∴平面GOH∥平面ACD…(5分)
∴GH∥平面ACD…(6分)
(Ⅱ)以CB为x轴,CA为y轴,CD为z轴,建立如图所示的直角坐标系
则C(0,0,0),B(2,0,0),A(0,2,0),O(1,1,0),E(2,0,2)
平面BCE的法向量
m
=(0,1,0),设平面OCE的法向量
n
=(x0.y0.z0).…(8分)
CE
=(2,0,2),
CO
=(1,1,0).
n
CE
=0
n
CO
=0
2x0+2z0=0
x0+y0=0

令x0=-1,∴
n
=(-1,1,1).…(10分)
∵二面角O-CE-B是锐二面角,记为θ,则
cosθ=|cos
m
n
|=
m
n
|
m
||
n
|
=
1
3
=
3
3
…(12分)
点评:本题考查直线与平面平行的判定定理的证明,二面角的平面角的求法,考查空间想象能力以及计算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网