题目内容
19.设数列{an}满足a2+a4=10,点Pn(n,an)对任意的n∈N*,都有向量$\overrightarrow{{P_n}{P_{n+1}}}=({1,2})$,则数列{an}的前n项和Sn=n2.分析 运用向量的坐标运算和等差数列的定义得{an}等差数列,公差d=2,将a2=a1+2,代入a2+a4=10,中,得a1=1,由此能求出{an}的前n项和Sn.
解答 解:∵Pn(n,an),∴Pn+1(n+1,an+1),
$\overrightarrow{{P}_{n}{P}_{n+1}}$=(1,an+1-an)=(1,2),
∴an+1-an=2,
∴{an}等差数列,公差d=2,
将a2=a1+2,a4=a1+6代入a2+a4=10中,
解得a1=1,
∴an=1+(n-1)×2=2n-1,
∴Sn=$\frac{1}{2}$n(1+2n-1)=n2.
故答案为:n2.
点评 本题考查数列的前n项和的求法,同时考查向量的坐标运算,是中档题,解题时要认真审题,注意等差数列的通项公式的合理运用.
练习册系列答案
相关题目
10.近年来随着我国在教育科研上的投入不断加大,科学技术得到迅猛发展,国内企业的国际竞争力得到大幅提升.伴随着国内市场增速放缓,国内有实力企业纷纷进行海外布局,第二轮企业出海潮到来.如在智能手机行业,国产品牌已在赶超国外巨头,某品牌手机公司一直默默拓展海外市场,在海外共设30多个分支机构,需要国内公司外派大量70后、80后中青年员工.该企业为了解这两个年龄层员工是否愿意被外派工作的态度,按分层抽样的方式从70后和80后的员工中随机调查了100位,得到数据如表:
(Ⅰ)根据调查的数据,是否有90%以上的把握认为“是否愿意被外派与年龄有关”,并说明理由;
(Ⅱ)该公司举行参观驻海外分支机构的交流体验活动,拟安排4名参与调查的70后员工参加.70后员工中有愿意被外派的3人和不愿意被外派的3人报名参加,现采用随机抽样方法从报名的员工中选4人,求选到愿意被外派人数不少于不愿意被外派人数的概率.
参考数据:
(参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
| 愿意被外派 | 不愿意被外派 | 合计 | |
| 70后 | 20 | 20 | 40 |
| 80后 | 40 | 20 | 60 |
| 合计 | 60 | 40 | 100 |
(Ⅱ)该公司举行参观驻海外分支机构的交流体验活动,拟安排4名参与调查的70后员工参加.70后员工中有愿意被外派的3人和不愿意被外派的3人报名参加,现采用随机抽样方法从报名的员工中选4人,求选到愿意被外派人数不少于不愿意被外派人数的概率.
参考数据:
| P(K2>k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
7.
如图所示,为了测量A,B处岛屿的距离,小明在D处观测,A,B分别在D处的北偏西15°、北偏东45°方向,再往正东方向行驶40海里至C处,观测B在C处的正北方向,A在C处的北偏西60°方向,则A,B两处岛屿间的距离为( )
| A. | $20\sqrt{6}$海里 | B. | $40\sqrt{6}$海里 | C. | $20(1+\sqrt{3})$海里 | D. | 40海里 |
14.如图,已知$\overrightarrow{AB}=a$,$\overrightarrow{AC}=b$,$\overrightarrow{DC}=3\overrightarrow{BD}$,$\overrightarrow{AE}=2\overrightarrow{EC}$,则$\overrightarrow{DE}$=( )

| A. | $\frac{3}{4}b-\frac{1}{3}a$ | B. | $\frac{5}{12}a-\frac{3}{4}b$ | C. | $\frac{3}{4}a-\frac{1}{3}b$ | D. | $\frac{5}{12}b-\frac{3}{4}a$ |
4.在平面直角坐标系中,角α的顶点与原点O重合,始边与x轴的非负半轴重合,点P(-2t,t)(t≠0)是角α终边上的一点,则$tan(α+\frac{π}{4})$的值为( )
| A. | $3-2\sqrt{2}$ | B. | 3 | C. | $-\frac{1}{3}$ | D. | $\frac{1}{3}$ |