题目内容

19.设数列{an}满足a2+a4=10,点Pn(n,an)对任意的n∈N*,都有向量$\overrightarrow{{P_n}{P_{n+1}}}=({1,2})$,则数列{an}的前n项和Sn=n2

分析 运用向量的坐标运算和等差数列的定义得{an}等差数列,公差d=2,将a2=a1+2,代入a2+a4=10,中,得a1=1,由此能求出{an}的前n项和Sn

解答 解:∵Pn(n,an),∴Pn+1(n+1,an+1),
$\overrightarrow{{P}_{n}{P}_{n+1}}$=(1,an+1-an)=(1,2),
∴an+1-an=2,
∴{an}等差数列,公差d=2,
将a2=a1+2,a4=a1+6代入a2+a4=10中,
解得a1=1,
∴an=1+(n-1)×2=2n-1,
∴Sn=$\frac{1}{2}$n(1+2n-1)=n2
故答案为:n2

点评 本题考查数列的前n项和的求法,同时考查向量的坐标运算,是中档题,解题时要认真审题,注意等差数列的通项公式的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网