题目内容
11.从集合{2,3,4,5}中随机抽取一个数a,从集合{4,6,8}中随机抽取一个数b,则向量$\overrightarrow{m}$=(a,b)与向量$\overrightarrow{n}$=(-2,1)垂直的概率为$\frac{1}{4}$.分析 求得所有的(a,b)共有12个,满足$\overrightarrow{m}$⊥$\overrightarrow{n}$的(a,b)共有3个,由此求得向量$\overrightarrow{m}$=(a,b)与向量$\overrightarrow{n}$=(-2,1)垂直的概率.
解答 解:所有的(a,b)共有4×3=12个,
由向量 $\overrightarrow{m}$=(a,b)与向量$\overrightarrow{n}$=(-2,1)垂直,可得$\overrightarrow{m}$•$\overrightarrow{n}$=-2a+b=0,
故满足$\overrightarrow{m}$⊥$\overrightarrow{n}$的(a,b)共有3个:(2,4)、(3,6),(4,8),
故向量$\overrightarrow{m}$=(a,b)与向量$\overrightarrow{n}$=(-2,1)垂直的概率为$\frac{3}{12}$=$\frac{1}{4}$,
故答案为:$\frac{1}{4}$.
点评 本题主要考查两个向量垂直的性质,古典概率及其计算公式,属于基础题.
练习册系列答案
相关题目
1.在信息时代的今天,随着手机的发展,“微信”越来越成为人们交流的一种方式,某机构对“使用微信交流”的态度进行调查,随机抽取了100人,他们年龄的频数分布及对“使用微信交流”赞成的人数如下表:(注:年龄单位:岁)
(1)若以“年龄45岁为分界点”,由以上统计数据完成下面的2×2列联表,并通过计算判断是否在犯错误的概率不超过0.001的前提下认为“使用微信交流的态度与人的年龄有关”?
(2)若从年龄在[55,65),[65,75)的别调查的人中各随机选取两人进行追踪调查,记选中的4人中赞成“使用微信交流”的人数为X,求随机变量X的分布列及数学期望.
参考数据:
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
| 年龄 | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75) |
| 频数 | 10 | 30 | 30 | 20 | 5 | 5 |
| 赞成人数 | 8 | 25 | 24 | 10 | 2 | 1 |
| 年龄不低于45岁的人数 | 年龄低于45岁的人数 | 合计 | |
| 赞成 | |||
| 不赞成 | |||
| 合计 |
参考数据:
| P(K2≥k0) | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 3.841 | 6.635 | 7.879 | 10.828 |
2.对于下列说法正确的是( )
| A. | 若f(x)是奇函数,则f(x)是单调函数 | |
| B. | 命题“若x2-x-2=0,则x=1”的逆否命题是“若x≠1,则x2-x-2=0” | |
| C. | 命题p:?x∈R,2x>1024,则¬p:?x0∈R,${2^{x_0}}<1024$ | |
| D. | 命题“?x∈(-∞,0),2x<x2”是真命题 |
6.已知实数x、y满足$\left\{\begin{array}{l}1≤x-y≤2\\ 2≤x+y≤4\end{array}\right.$,则z=4x-2y的最大值为( )
| A. | 3 | B. | 5 | C. | 10 | D. | 12 |
16.设Sn是等差数列{an}的前n项和,若a3+a5+a7=27,则S9=( )
| A. | 81 | B. | 79 | C. | 77 | D. | 75 |
20.已知命题p,?x∈R都有2x<3x,命题q:?x0∈R,使得${x_0}^3=1-{x_0}^2$,则下列复合命题正确的是( )
| A. | p∧q | B. | ¬p∧q | C. | p∧¬q | D. | (¬p)∧(¬q) |
1.已知$\frac{a+i}{i}$=1+bi,其中a,b是实数,i是虚数单位,则a+b=( )
| A. | 0 | B. | 1 | C. | 2 | D. | -1 |