题目内容

已知圆C:x2+(y-3)2=9,过原点作圆C的弦OP,则OP的中点Q的轨迹方程为(  )
A、(x-
3
2
2+y2=
9
4
(y≠0)
B、(x-
3
2
2+y2=
9
4
C、x2+(y-
3
2
2=
9
4
(y≠0)
D、x2+(y-
3
2
2=
9
4
考点:轨迹方程
专题:计算题,直线与圆
分析:设Q(x,y),则P(2x,2y),代入圆C:x2+(y-3)2=9,即可得到点Q的轨迹方程.
解答: 解:设Q(x,y)(y≠0),则P(2x,2y),
代入圆C:x2+(y-3)2=9,可得4x2+(2y-3)2=9,
∴点Q的轨迹方程为x2+(y-
3
2
2=
9
4
(y≠0).
故答案为:x2+(y-
3
2
2=
9
4
(y≠0).
点评:本题考查轨迹方程的求法,代入法(或相关点法)是常用方法,必须熟练掌握,考查计算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网