题目内容
9.设x,y满足条件$\left\{\begin{array}{l}{3x+y≤13}\\{2x+3y≤18}\\{x≥0,y≥0}\end{array}\right.$,求z=5x+3y的最大值.分析 作出不等式组对应的平面区域,根据z的几何意义,利用数形结合即可得到最大值.
解答 解:不等式组对应的平面区域如图:
由z=5x+3y得y=-$\frac{5}{3}x+\frac{z}{3}$,![]()
平移直线y=-$\frac{5}{3}x+\frac{z}{3}$,则由图象可知当直线y=-$\frac{5}{3}x+\frac{z}{3}$经过点B时直线y=-$\frac{5}{3}x+\frac{z}{3}$的截距最大,
此时z最大,
由$\left\{\begin{array}{l}{3x+y=13}\\{2x+3y=18}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=3}\\{y=4}\end{array}\right.$,即B(3,4),
此时z=5×3+3×4=27,
故z=5x+3y的最大值是27.
点评 本题主要考查线性规划的应用,根据z的几何意义,利用数形结合是解决本题的关键.
练习册系列答案
相关题目
14.设a∈R,则“a=1”是“直线l1:ax+2y-1=0与直线l2:x+(a+1)y+4=0平行”的( )
| A. | 充分而不必要条件 | B. | 必要而不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
19.已知函数f(x)定义域为[0,+∞),当x∈[0,1]时,f(x)=sinπx,当x∈[n,n+1]时,f(x)=$\frac{f(x-n)}{{2}^{n}}$,其中n∈N,若函数f(x)的图象与直线y=b有且仅有2016个交点,则b的取值范围是( )
| A. | (0,1) | B. | ($\frac{1}{{2}^{1007}}$,$\frac{1}{{2}^{1006}}$) | C. | ($\frac{1}{{2}^{2017}}$,$\frac{1}{{2}^{2016}}$) | D. | ($\frac{1}{{2}^{1008}}$,$\frac{1}{{2}^{1007}}$) |