题目内容
已知正项数列{an}满足:a1=
,an+1=
.
(Ⅰ)求通项an;
(Ⅱ)若数列{bn}满足bn•an=3(1-
),求数列{bn}的前n和.
| 3 |
| 2 |
| 3an |
| 2an+3 |
(Ⅰ)求通项an;
(Ⅱ)若数列{bn}满足bn•an=3(1-
| 1 |
| 2n |
考点:数列的求和,数列递推式
专题:点列、递归数列与数学归纳法
分析:(Ⅰ)观察数列的递推公式,利用递推公式即可求出数列通项.
(Ⅱ)求出数列{bn}的通项,利用公式法和错位相减法 求出数列{bn}的前n和.
(Ⅱ)求出数列{bn}的通项,利用公式法和错位相减法 求出数列{bn}的前n和.
解答:
解:(Ⅰ)∵an+1=
,即
=
+
,
∴
=
+
(n-1)=
n,
∴an=
.
(Ⅱ)∵bn•an=3(1-
),
∴bn=2n(1-
)=2n-
,
∴Sn=b1+b2+…bn=(2+4+…+2n)-(1+
+
+…+
)
=n(n+1)-(1+
+
+…+
),
令Tn=1+
+
+…+
,则
Tn=
+
+
+…+
,
两式相减得:
Tn=1+
+
+
+…+
-
=
-
=2(1-
)-
,
∴Tn=4(1-
)-
∴Sn=n2+n-4+
.
| 3an |
| 2an+3 |
| 1 |
| an+1 |
| 1 |
| an |
| 2 |
| 3 |
∴
| 1 |
| an |
| 1 |
| a1 |
| 2 |
| 3 |
| 2 |
| 3 |
∴an=
| 3 |
| 2n |
(Ⅱ)∵bn•an=3(1-
| 1 |
| 2n |
∴bn=2n(1-
| 1 |
| 2n |
| 2n |
| 2n |
∴Sn=b1+b2+…bn=(2+4+…+2n)-(1+
| 2 |
| 2 |
| 3 |
| 22 |
| n |
| 2n-1 |
=n(n+1)-(1+
| 2 |
| 2 |
| 3 |
| 22 |
| n |
| 2n-1 |
令Tn=1+
| 2 |
| 2 |
| 3 |
| 22 |
| n |
| 2n-1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 2 |
| 22 |
| 3 |
| 23 |
| n |
| 2n |
两式相减得:
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 2n-1 |
| n |
| 2n |
=
1•(1-
| ||
1-
|
| n |
| 2n |
=2(1-
| 1 |
| 2n |
| n |
| 2n |
∴Tn=4(1-
| 1 |
| 2n |
| 2n |
| 2n |
∴Sn=n2+n-4+
| 2+n |
| 2n-1 |
点评:本题主要考察了求解数列的通项以及求和方法,属于中档题.
练习册系列答案
相关题目
| 5 |
| 2-i |
| A、2-i | B、2+i |
| C、1+2i | D、1-2i |