题目内容
11.函数f(x)=3x2-3lnx的单调递减区间是$(0,\frac{{\sqrt{2}}}{2})$.分析 求函数的定义域和导数,利用导数和单调性之间的关系,即可得到结论.
解答 解:函数的定义域为(0,+∞),
函数的导数为f′(x)=6x-$\frac{3}{x}$=$\frac{6{x}^{2}-3}{x}$,
由f′(x)<0,
得6x2-3<0,即0<x<$\frac{\sqrt{2}}{2}$,
即函数的单调递减区间为(0,$\frac{\sqrt{2}}{2}$),
故答案为:$(0,\frac{{\sqrt{2}}}{2})$.
点评 本题主要考查函数单调区间的求解,利用函数单调性和导数之间的关系,解导数不等式是解决本题的关键.
练习册系列答案
相关题目
2.《中国好声音》每期节目有四位导师A,B,C,D参与.其规则是导师坐在特定的座椅上且背对歌手认真倾听其演唱,若每位参赛选手在演唱完之前有导师欣赏而为其转身,则该选手可以选择加入为其转身的导师的团队中接受指导训练;若出现多位导师为同一位学员转身,则选择权反转,交由学员自行选择导师,已知某期《中国好声音》中,8位选手唱完后,四位导师为其转身的情况统计如下:(记转身为T)
现从这8位选手中随机抽取两人考查他们演唱完后导师的转身情况.
(1)求选出的两人获得导师为其转身的人次和为4的概率;
(2)记选出的2人获得导师为其转身的人次之和为X,求X的分布列及数学期望E(X)
现从这8位选手中随机抽取两人考查他们演唱完后导师的转身情况.
(1)求选出的两人获得导师为其转身的人次和为4的概率;
(2)记选出的2人获得导师为其转身的人次之和为X,求X的分布列及数学期望E(X)
| 导师 选手 | A | B | C | D |
| 1 | T | T | ||
| 2 | T | T | T | T |
| 3 | T | |||
| 4 | T | T | ||
| 5 | T | T | T | |
| 6 | T | T | ||
| 7 | T | T | T | T |
| 8 | T | T | T |
19.对a>0,b>0,a+b≥2$\sqrt{ab}$.若x+$\frac{1}{x}$≥2$\sqrt{x•\frac{1}{x}}$,则x+$\frac{1}{x}$≥2,以上推理过程中的错误为( )
| A. | 大前提 | B. | 小前提 | C. | 结论 | D. | 无错误 |
3.若集合A={x|x2+x-2<0},集合$B=\left\{{x|\frac{1}{x^2}>1}\right\}$,则A∩B=( )
| A. | (-1,2) | B. | (-∞,-1)∪(1,+∞) | C. | (-1,1) | D. | (-1,0)∪(0,1) |