题目内容
已知数列{an}中,a9=
,an+1=
.
(1)求证:数列{
}为等差数列;
(2)求an.
| 1 |
| 7 |
| an |
| 3an+1 |
(1)求证:数列{
| 1 |
| an |
(2)求an.
考点:数列递推式,等差关系的确定
专题:计算题,等差数列与等比数列
分析:(1)取倒数,即可证明数列{
}为等差数列;
(2)先求数列{
}的通项,再求an.
| 1 |
| an |
(2)先求数列{
| 1 |
| an |
解答:
(1)证明:∵an+1=
,
∴
=
,
∴
=3+
,
∴
-
=3
故数列{
}为等差数列;
(2)解:∵
=
+(n-9)d=7+(n-9)×3=3n-20,
∴an=
.
| an |
| 3an+1 |
∴
| 1 |
| an+1 |
| 3an+1 |
| an |
∴
| 1 |
| an+1 |
| 1 |
| an |
∴
| 1 |
| an+1 |
| 1 |
| an |
故数列{
| 1 |
| an |
(2)解:∵
| 1 |
| an |
| 1 |
| a9 |
∴an=
| 1 |
| 3n-20 |
点评:本题考查等差数列的证明,考查数列的通项,确定数列{
}为等差数列是关键.
| 1 |
| an |
练习册系列答案
相关题目