题目内容

12.已知点M,N是抛物线C:y=4x2上不同的两点,F为抛物线C的焦点,且满足∠MFN=135°,弦MN的中点P到C的准线l的距离记为d,若|MN|2=λ•d2,则λ的最小值为2+$\sqrt{2}$.

分析 求得抛物线的焦点和准线方程,设|MF|=a,|NF|=b,由∠MFN=135°,运用余弦定理可得|MN|,运用抛物线的定义和中位线定理可得d=$\frac{1}{2}$(|MF|+|NF|)=$\frac{1}{2}$(a+b),运用基本不等式计算即可得到所求最小值.

解答 解:抛物线y=4x2的标准方程x2=$\frac{1}{4}$y,则焦点F(0,$\frac{1}{16}$),准线为y=-$\frac{1}{16}$,
过P做PD⊥准线l交准线l于D,
设|MF|=a,|NF|=b,由∠MFN=135°,
可得|MN|2=|MF|2+|NF|2-2|MF|•|NF|•cos∠MFN=a2+b2+$\sqrt{2}$ab,
由抛物线的定义可得M到准线的距离为|MF|,N到准线的距离为|NF|,
由梯形的中位线定理可得d=$\frac{1}{2}$(|MF|+|NF|)=$\frac{1}{2}$(a+b),
由|MN|2=λ•d2,可得$\frac{1}{4}$λ=$\frac{{a}^{2}+{b}^{2}+\sqrt{2}ab}{(a+b)^{2}}$=1-$\frac{(2-\sqrt{2})ab}{(a+b)^{2}}$≥1-$\frac{(2-\sqrt{2})ab}{(2\sqrt{ab})^{2}}$=1-$\frac{2-\sqrt{2}}{4}$=$\frac{2+\sqrt{2}}{4}$,
可得λ≥2+$\sqrt{2}$,当且仅当a=b时,取得最小值2+$\sqrt{2}$,
λ的最小值2+$\sqrt{2}$,
故答案为:2+$\sqrt{2}$.

点评 本题考查抛物线的定义、方程和性质,考查余弦定理和基本不等式的运用:求最值,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网