题目内容

16.已知F1,F2分别为双曲线E:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的左、右焦点,离心率为$\frac{5}{3}$,过原点的l交双曲线左、右两支分别于A,B,若|BF1|-|AF1|=6,则该双曲线的标准方程为(  )
A.$\frac{x^2}{9}-\frac{y^2}{16}=1$B.$\frac{x^2}{18}-\frac{y^2}{32}=1$C.$\frac{x^2}{9}-\frac{y^2}{25}=1$D.$\frac{x^2}{36}-\frac{y^2}{64}=1$

分析 根据题意,作出图形,由双曲线的几何性质分析可得|BF2|=|AF1|,结合题意可得|BF1|-|BF2|=6,由双曲线的定义分析可得a=3,结合双曲线的离心率可得c的值,进而计算可得b的值,将a、b的值代入双曲线的方程计算可得答案.

解答 解:根据题意,如图F1,F2分别为双曲线E的焦点,直线l交双曲线左、右两支分别于A,B,
直线l过原点,则直线l关于原点对称,则有|BF2|=|AF1|,
若|BF1|-|AF1|=6,则有|BF1|-|BF2|=6,
则双曲线E中,2a=6,即a=3,
又由双曲线E的离心率为$\frac{5}{3}$,即e=$\frac{c}{a}$=$\frac{5}{3}$,
则c=5,
b2=c2-a2=25-9=16;
则双曲线的方程为:$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1;
故选:A.

点评 本题考查双曲线的几何性质,关键是利用双曲线的对称性将|BF1|-|AF1|=6转化求出a的值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网