题目内容

已知f(x)是定义在(-4,4)上的奇函数,且它在定义域内单调递减,若a满足:f(1-a)+f(2a-3)<0,求实数a的取值范围.
考点:奇偶性与单调性的综合
专题:函数的性质及应用
分析:根据函数奇偶性和单调性之间的关系,将不等式进行转化即可.
解答: 解:∵函数f(x)为奇函数,
∴f(1-a)<-f(2a-3)=f(3-2a).
又f(x)为(-4,4)上的减函数,
-4<1-a<4
-4<2a-3<4
1-a>3-2a

-3<a<5
1
2
<a<
7
2
a>2

解得2<a<
7
2

∴a的取值范围是{a|2<a<
7
2
}.
点评:本题主要考查不等式的求解,根据函数奇偶性和单调性之间的关系是解决本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网