题目内容
9.函数f(x)=x3+x在x=1处的切线为m.(1)求切线m的方程;
(2)若曲线g(x)=sinx+ax在点A(0,g(0))处的切线与m垂直,求实数a的取值.
分析 (1)求出导数,求得切线的斜率和切点,由点斜式方程可得切线的方程;
(2)求出g(x)的导数,可得切线的斜率,由两直线垂直的条件:斜率之积为-1,即可得到a的值.
解答 解:(1)根据条件f′(x)=3x2+1,
切点为(1,2),斜率为f′(1)=4,
可得切线的方程为y-2=4(x-1),
所以切线m的方程为4x-y-2=0;
(2)根据条件g′(x)=cosx+a,
又g(x)图象上一点A(0,g(0))处的切线与m垂直,
则有$4×{g^'}(0)=-1⇒a=-\frac{5}{4}$,
所以a的值为$-\frac{5}{4}$.
点评 本题考查导数的运用:求切线的方程,考查导数的几何意义,正确求导和运用直线方程是解题的关键,属于基础题.
练习册系列答案
相关题目
20.已知α∈[$\frac{π}{2}$,$\frac{3π}{2}$],β∈[-$\frac{π}{2}$,0],且(α-$\frac{π}{2}$)3-sinα-2=0,8β3+2cos2β+1=0,则sin($\frac{α}{2}$+β)的值为( )
| A. | 0 | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{1}{2}$ | D. | 1 |
4.已知函数f(x)=-x2+2lnx的极大值是函数g(x)=x+$\frac{a}{x}$的极小值的-$\frac{1}{2}$倍,并且$?{x_1},{x_2}∈[\frac{1}{e},3]$,不等式$\frac{{f({x_1})-g({x_2})}}{k-1}$≤1恒成立,则实数k的取值范围是( )
| A. | $(-∞,-\frac{40}{3}+2ln3]∪(-1,1)∪(1,+∞)$ | B. | $(-∞,-\frac{34}{3}+2ln3]∪(1,+∞)$ | ||
| C. | $(-∞,-\frac{34}{3}+2ln3]∪[-1,1)∪(1,+∞)$ | D. | $(-∞,-\frac{40}{3}+2ln3]∪(1,+∞)$ |
14.下面使用类比推理正确的是( )
| A. | 直线a,b,c,若a∥b,b∥c,则a∥c.类推出:向量$\overrightarrow a$,$\overrightarrow b$,$\overrightarrow c$,若$\overrightarrow a$∥$\overrightarrow b$,$\overrightarrow b$∥$\overrightarrow c$,则$\overrightarrow a$∥$\overrightarrow c$ | |
| B. | 同一平面内,直线a,b,c,若a⊥c,b⊥c,则a∥b.类推出:空间中,直线a,b,c,若a⊥c,b⊥c,则a∥b | |
| C. | 若a,b∈R,则a-b>0⇒a>b.类推出:若a,b∈C,则a-b>0⇒a>b | |
| D. | 由向量加法的几何意义,可以类比得到复数加法的几何意义. |
1.已知函数f(x)=ax+elnx与g(x)=$\frac{{x}^{2}}{x-elnx}$的图象有三个不同的公共点,其中e为自然对数的底数,则实数a的取值范围为( )
| A. | a<-e | B. | a>1 | C. | a>e | D. | a<-3或a>1 |
16.已知等比数列{an}中,a1•a9=64,a3+a7=20,则a35=( )
| A. | 49 | B. | $\frac{1}{{4}^{6}}$ | C. | $\frac{1}{{4}^{6}}$或49 | D. | -49 |