题目内容

已知数列{an}中,前n项和为Sn,a1=5,且Sn+1=Sn+2an=2n+2(n∈N+).
(1)求a2,a3的值;
(2)设bn=
an
2n
,若实数λ使得数列{bn}为等差数列,求λ的值.
考点:数列递推式
专题:点列、递归数列与数学归纳法
分析:(1)把已知递推式变形,得到an+1=2an+2n+2,然后最直接把a1=5代入依次求a2,a3的值;
(2)由an+1=2an+2n+2,得到
an+1
2n+1
=
an
2n
+
1
2
+
1
2n
,把n依次取1,2,3,…,n后累加,求出数列{an}的通项公式,代入bn=
an
2n
,由等差数列通项公式的特点求得λ的值.
解答: 解:(1)由Sn+1=Sn+2an+2n+2,得
Sn+1-Sn=2an+2n+2,即an+1=2an+2n+2

∵a1=5,
a2=2a1+21+2=2×5+4=14
a3=2a2+22+2=2×14+6=34
(2)由(1)知,an+1=2an+2n+2
an+1
2n+1
=
an
2n
+
1
2
+
1
2n

an
2n
-
an-1
2n-1
=
1
2
+
1
2n-1
(n≥2),
a2
22
-
a1
21
=
1
2
+
1
2

a3
23
-
a2
22
=
1
2
+
1
22

a4
24
-
a3
23
=
1
2
+
1
23


an
2n
-
an-1
2n-1
=
1
2
+
1
2n-1
(n≥2),

累加得:
an
2n
-
a1
2
=
1
2
(n-1)+(
1
2
+
1
22
+…+
1
2n-1
)

an
2n
=
5
2
+
1
2
(n-1)+
1
2
(1-
1
2n-1
)
1-
1
2

解得:an=(3+
n
2
-
1
2n-1
)•2n
(n≥2).
a1=5适合上式,
an=(3+
n
2
-
1
2n-1
)•2n

∴bn=
an
2n
=
(3+
n
2
-
1
2n-1
)•2n
2n
=3+
n
2
-
1
2n-1
+
λ
2n

要使数列{bn}为等差数列,则
λ
2n
-
1
2n-1
=
λ-2
2n
=0
,即λ=2.
点评:本题考查数列递推式,考查了利用类加法求数列的通项公式,训练了等差关系的确定,是中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网