题目内容
6.(1)设∠POC=θ,求运输线总长度y关于θ的函数;
(2)求运输线总长度的最小值.
分析 (1)设∠POC=θ,求出$\widehat{AP}$=10($\frac{2}{3}$π-θ),PQ=25-10cosθ-$\frac{10\sqrt{3}}{3}$sinθ,CQ=$\frac{20\sqrt{3}}{3}$sinθ,即可求运输线总长度y关于θ的函数;
(2)利用导数求运输线总长度的最小值.
解答 解:(1)由题意,$\widehat{AP}$=10($\frac{2}{3}$π-θ),PQ=25-10cosθ-$\frac{10\sqrt{3}}{3}$sinθ,CQ=$\frac{20\sqrt{3}}{3}$sinθ,
∴y=10($\frac{2}{3}$π-θ)+25-10cosθ-$\frac{10\sqrt{3}}{3}$sinθ+50-$\frac{20\sqrt{3}}{3}$sinθ=$\frac{20π}{3}$+75-10θ-10cosθ-10$\sqrt{3}$sinθ(0<θ<$\frac{2}{3}$π);
(2)y′=-10+10sinθ-10$\sqrt{3}$cosθ=0,
∴20sin(θ-$\frac{π}{3}$)=10,
∴θ=$\frac{π}{2}$,
∴0<θ<$\frac{π}{2}$,函数单调递减,$\frac{π}{2}$<θ<$\frac{2}{3}$π,函数单调递增,
∴θ=$\frac{π}{2}$,运输线总长度y最小,最小值为$\frac{10π}{3}$+75-10$\sqrt{3}$(km).
点评 本题考查利用数学知识解决实际问题,考查导数知识的运用,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关题目
17.已知$\frac{1}{2}$<a<4,函数f(x)=x3-3bx2+a有且仅有两个不同的零点x1,x2,则|x1-x2|的取值范围是( )
| A. | ($\frac{1}{2}$,1) | B. | (1,2) | C. | ($\frac{3}{2}$,3) | D. | (2,3) |
14.已知A(1,-2,11),B(6,-1,4),C(4,2,3),则△ABC为( )
| A. | 锐角三角形 | B. | 等腰三角形 | C. | 直角三角形 | D. | 钝角三角形 |
6.数列{an}满足a1=1,且对任意的m,n∈N*都有am+n=am+an+mn,则$\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{{{a_{20}}}}$等于( )
| A. | $\frac{40}{21}$ | B. | $\frac{20}{21}$ | C. | $\frac{19}{10}$ | D. | $\frac{20}{19}$ |