ÌâÄ¿ÄÚÈÝ
16£®ÒÑÖªµÈ²îÊýÁÐ{an}ΪµÝÔöÊýÁУ¬ÇÒa1=1£¬{bn}ΪµÈ±ÈÊýÁУ¬ÇÒa2=b2£¬a5=b3£¬a14=b4£®£¨1£©Çó{an}£¬{bn}µÄͨÏʽ£»
£¨2£©ÒÑÖªÊýÁÐ{cn}Âú×㣺an+1=$\frac{{c}_{1}}{{b}_{1}}$+$\frac{{c}_{2}}{{b}_{2}}$+¡+$\frac{{c}_{n}}{{b}_{n}}$£¬ÇóÊýÁÐ{an•cn}µÄǰnÏîºÍSn£®
·ÖÎö £¨1£©ÉèµÝÔöµÈ²îÊýÁÐ{an}µÄ¹«²îΪd£¾0£¬ÇÒa1=1£¬µÈ±ÈÊýÁÐ{bn}µÄ¹«±ÈΪq£¬ÇÒa2=b2£¬a5=b3£¬a14=b4£®¿ÉµÃ1+d=b1q£¬1+4d=${b}_{1}{q}^{2}$£¬1+13d=${b}_{1}{q}^{3}$£¬ÁªÁ¢½â³ö¼´¿ÉµÃ³ö£®
£¨2£©cn=2¡Á3n-1£®¿ÉµÃan•cn=£¨4n-2£©•3n-1£®ÔÙÀûÓá°´íλÏà¼õ·¨¡±ÓëµÈ±ÈÊýÁеÄǰnÏîºÍ¹«Ê½¼´¿ÉµÃ³ö£®
½â´ð ½â£º£¨1£©ÉèµÝÔöµÈ²îÊýÁÐ{an}µÄ¹«²îΪd£¾0£¬ÇÒa1=1£¬µÈ±ÈÊýÁÐ{bn}µÄ¹«±ÈΪq£¬ÇÒa2=b2£¬a5=b3£¬a14=b4£®
¡à1+d=b1q£¬1+4d=${b}_{1}{q}^{2}$£¬1+13d=${b}_{1}{q}^{3}$£¬
ÁªÁ¢½âµÃd=2£¬q=3£¬b1=1£®
¡àan=1+2£¨n-1£©=2n-1£¬
bn=3n-1£®
£¨2£©¡ßan+1=$\frac{{c}_{1}}{{b}_{1}}$+$\frac{{c}_{2}}{{b}_{2}}$+¡+$\frac{{c}_{n}}{{b}_{n}}$£¬
¡àµ±n=1ʱ£¬a2=$\frac{{c}_{1}}{{b}_{1}}$£¬½âµÃc1=3£»
µ±n¡Ý2ʱ£¬an=$\frac{{c}_{1}}{{b}_{1}}$+$\frac{{c}_{2}}{{b}_{2}}$+¡+$\frac{{c}_{n-1}}{{b}_{n-1}}$£¬¿ÉµÃan+1-an=$\frac{{c}_{n}}{{b}_{n}}$=2£¬
¡àcn=2¡Á3n-1£®
¡àan•cn=£¨4n-2£©•3n-1£®
¡àÊýÁÐ{an•cn}µÄǰnÏîºÍSn=2+6¡Á3+¡+£¨4n-2£©•3n-1£®
3Sn=2¡Á3+6¡Á32+¡+£¨4n-6£©•3n-1+£¨4n-2£©•3n£¬
¡à-2Sn=2+4£¨3+32+¡+3n-1£©-£¨4n-2£©•3n=2+4¡Á$\frac{3£¨{3}^{n-1}-1£©}{3-1}$-£¨4n-2£©•3n=£¨4-4n£©•3n-4£¬
½âµÃSn=2+£¨2n-2£©•3n£®
µãÆÀ ±¾Ì⿼²éÁ˵ÝÍÆ¹ØÏµµÄÓ¦ÓᢷÖÀàÌÖÂÛ˼Ïë·½·¨¡¢·Ö×éÇóºÍ·½·¨¡¢µÈ±ÈÊýÁеÄͨÏʽ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| ·ÖÊý¶Î£¨·Ö£© | [50£¬70£© | [70£¬90£© | [90£¬110£© | [110£¬130£© | [130£¬150£© | ×Ü¼Æ |
| ƵÊý | b | |||||
| ƵÂÊ | a | 0.25 |
£¨2£©Çó·ÖÊýÔÚ[90£¬100£©·¶Î§ÄÚµÄѧÉúÈËÊý£¬²¢¹À¼ÆÕâ´Î¿¼ÊÔȫУѧÉúÊýѧ³É¼¨µÄ¼°¸ñÂÊ£¨·ÖÊýÔÚ[90£¬150£©ÄÚΪ¼°¸ñ£©£»
£¨3£©´Ó³É¼¨ÔÚ[100£¬130£©·¶Î§ÄÚµÄѧÉúÖÐËæ»úÑ¡4ÈË£¬ÇóÆäÖгɼ¨ÔÚ[100£¬110£©ÄÚµÄÈËÊý×î¶à2È˵ĸÅÂÊ£®
| A£® | 2+cosx=4 | B£® | $\sqrt{10}$£¾¦Ð | C£® | sinx•cosx=sin2x | D£® | sin75¡ã£¾cos14¡ã |
| A£® | y2=8x | B£® | x2=4y | C£® | y2=8x»òx2=-4y | D£® | y2=8x»òx2=4y |