ÌâÄ¿ÄÚÈÝ

16£®ÒÑÖªµÈ²îÊýÁÐ{an}ΪµÝÔöÊýÁУ¬ÇÒa1=1£¬{bn}ΪµÈ±ÈÊýÁУ¬ÇÒa2=b2£¬a5=b3£¬a14=b4£®
£¨1£©Çó{an}£¬{bn}µÄͨÏʽ£»
£¨2£©ÒÑÖªÊýÁÐ{cn}Âú×㣺an+1=$\frac{{c}_{1}}{{b}_{1}}$+$\frac{{c}_{2}}{{b}_{2}}$+¡­+$\frac{{c}_{n}}{{b}_{n}}$£¬ÇóÊýÁÐ{an•cn}µÄǰnÏîºÍSn£®

·ÖÎö £¨1£©ÉèµÝÔöµÈ²îÊýÁÐ{an}µÄ¹«²îΪd£¾0£¬ÇÒa1=1£¬µÈ±ÈÊýÁÐ{bn}µÄ¹«±ÈΪq£¬ÇÒa2=b2£¬a5=b3£¬a14=b4£®¿ÉµÃ1+d=b1q£¬1+4d=${b}_{1}{q}^{2}$£¬1+13d=${b}_{1}{q}^{3}$£¬ÁªÁ¢½â³ö¼´¿ÉµÃ³ö£®
£¨2£©cn=2¡Á3n-1£®¿ÉµÃan•cn=£¨4n-2£©•3n-1£®ÔÙÀûÓá°´íλÏà¼õ·¨¡±ÓëµÈ±ÈÊýÁеÄǰnÏîºÍ¹«Ê½¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©ÉèµÝÔöµÈ²îÊýÁÐ{an}µÄ¹«²îΪd£¾0£¬ÇÒa1=1£¬µÈ±ÈÊýÁÐ{bn}µÄ¹«±ÈΪq£¬ÇÒa2=b2£¬a5=b3£¬a14=b4£®
¡à1+d=b1q£¬1+4d=${b}_{1}{q}^{2}$£¬1+13d=${b}_{1}{q}^{3}$£¬
ÁªÁ¢½âµÃd=2£¬q=3£¬b1=1£®
¡àan=1+2£¨n-1£©=2n-1£¬
bn=3n-1£®
£¨2£©¡ßan+1=$\frac{{c}_{1}}{{b}_{1}}$+$\frac{{c}_{2}}{{b}_{2}}$+¡­+$\frac{{c}_{n}}{{b}_{n}}$£¬
¡àµ±n=1ʱ£¬a2=$\frac{{c}_{1}}{{b}_{1}}$£¬½âµÃc1=3£»
µ±n¡Ý2ʱ£¬an=$\frac{{c}_{1}}{{b}_{1}}$+$\frac{{c}_{2}}{{b}_{2}}$+¡­+$\frac{{c}_{n-1}}{{b}_{n-1}}$£¬¿ÉµÃan+1-an=$\frac{{c}_{n}}{{b}_{n}}$=2£¬
¡àcn=2¡Á3n-1£®
¡àan•cn=£¨4n-2£©•3n-1£®
¡àÊýÁÐ{an•cn}µÄǰnÏîºÍSn=2+6¡Á3+¡­+£¨4n-2£©•3n-1£®
3Sn=2¡Á3+6¡Á32+¡­+£¨4n-6£©•3n-1+£¨4n-2£©•3n£¬
¡à-2Sn=2+4£¨3+32+¡­+3n-1£©-£¨4n-2£©•3n=2+4¡Á$\frac{3£¨{3}^{n-1}-1£©}{3-1}$-£¨4n-2£©•3n=£¨4-4n£©•3n-4£¬
½âµÃSn=2+£¨2n-2£©•3n£®

µãÆÀ ±¾Ì⿼²éÁ˵ÝÍÆ¹ØÏµµÄÓ¦ÓᢷÖÀàÌÖÂÛ˼Ïë·½·¨¡¢·Ö×éÇóºÍ·½·¨¡¢µÈ±ÈÊýÁеÄͨÏʽ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø