题目内容

已知f(θ)=
cos(θ-
2
)sin(
3
+θ)
sin(-θ-π)

(1)化简f(θ);
(2)若f(θ)=
1
3
,求tanθ的值;
(3)若f(
π
6
-θ)=
1
3
,求f(
6
+θ)的值.
考点:运用诱导公式化简求值
专题:计算题,三角函数的求值
分析:(1)运用诱导公式即可化简求值f(θ)=-sin(
π
3
+θ);
(2先求得sin(
π
3
+θ)=-
1
3
,可得cos(
π
3
+θ)=±
2
2
3
,tan(
π
3
+θ)=±
2
4
,即可求值tanθ;
(3)先求-cosθ=
1
3
,可得sinθ=±
2
2
3
,从而可求f(
6
+θ)的值.
解答: 解:(1)f(θ)=
cos(θ-
2
)sin(
3
+θ)
sin(-θ-π)
=
-sinθsin(
π
3
+θ)
sinθ
=-sin(
π
3
+θ)=-
3
2
cosθ-
1
2
sinθ
(2)∵f(θ)=
1
3
,即sin(
π
3
+θ)=-
1
3
,可得cos(
π
3
+θ)=±
2
2
3
,tan(
π
3
+θ)=±
2
4

∴tanθ=tan(
π
3
+θ-
π
3
)=
tan(
π
3
+θ)-tan
π
3
1+tan(
π
3
+θ)tan
π
3
=
8
2
-9
3
5
或-
8
2
+9
3
5

(3)∵f(
π
6
-θ)=-sin(
π
3
+
π
6
-θ)=-cosθ=
1
3
,可得sinθ=±
2
2
3

∴f(
6
+θ)=-sin(
π
3
+
6
+θ)=sin(
π
6
+θ)=
1
2
cosθ+
3
2
sinθ=-
1
6
±
6
3
点评:本题主要考察了运用诱导公式化简求值,考察了计算能力,解题时需要耐心细致,属于基本知识的考查.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网