题目内容

已知函数f(x)=ax2-
1
2
x-
3
4
(a>0),若在任意长度为2的闭区间上总存在两点x1、x2,使得|f(x1)-f(x2)|≥
1
4
成立,则a的最小值为
 
考点:二次函数的性质
专题:函数的性质及应用
分析:要使函数f(x)在任意长度为2的闭区间上总存在两点x1,x2,使|f(x1)-f(x2)|≥
1
4
成立,只需要|f(
1
4a
-1)-f(
1
4a
)|≥
1
4
恒成立,从而可求实数a的最小值
解答: 解:要使函数f(x)=ax2-
1
2
x-
3
4
(a>0)在任意长度为2的闭区间上总存在两点x1,x2,使|f(x1)-f(x2)|≥
1
4
成立,
只需要|f(
1
4a
-1)-f(
1
4a
)|≥
1
4
恒成立
∵f(x)=ax2-
1
2
x-
3
4
=a(x-
1
4a
2-
1
16a
-
3
4

∴|f(
1
4a
-1)-f(
1
4a
)|=|a|≥
1
4

∵a>0
∴a≥
1
4

∴实数a的最小值为
1
4

故答案为:
1
4
点评:本题以新定义为素材,考查对新定义的理解,考查学生分析解决问题的能力,解题的关键是将问题转化为恒成立.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网