题目内容
15.已知函数$f(x)=\left\{{\begin{array}{l}{{{log}_2}x,x>0}\\{\frac{1}{3^x},x≤0}\end{array}}\right.$,则$f(f(\frac{1}{4}))$=( )| A. | 9 | B. | $\frac{1}{9}$ | C. | $\frac{2}{9}$ | D. | $-\frac{2}{3}$ |
分析 先求出f($\frac{1}{4}$)=$lo{g}_{2}\frac{1}{4}$=-2,从而$f(f(\frac{1}{4}))$=f(-2),由此能求出结果.
解答 解:∵函数$f(x)=\left\{{\begin{array}{l}{{{log}_2}x,x>0}\\{\frac{1}{3^x},x≤0}\end{array}}\right.$,
∴f($\frac{1}{4}$)=$lo{g}_{2}\frac{1}{4}$=-2,
$f(f(\frac{1}{4}))$=f(-2)=$\frac{1}{{3}^{-2}}$=9.
故选:A.
点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.
练习册系列答案
相关题目
3.已知a=log0.55、b=log32、c=20.3、d=($\frac{1}{2}$)2,从这四个数中任取一个数m,使函数f(x)=$\frac{1}{3}$x3+mx2+x+2有极值点的概率为( )
| A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{3}{4}$ | D. | 1 |
20.计算机中常用16进制,采用数字0~9和字母A~F共16个计数符号与10进制得对应关系如下表:
例如用16进制表示D+E=1B,则E×B=( )
| 16进制 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F |
| 10进制 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| A. | 6E | B. | 7C | C. | 8F | D. | 9A |
4.
某校为评估新教改对教学的影响,挑选了水平相当的两个平行班进行对比试验.甲班采用创新教法,乙班仍采用传统教法,一段时间后进行水平测试,成绩结果全部落在[60,100]区间内(满分100分),并绘制频率分布直方图如右图,两个班人数均为60人,成绩80分及以上为优良.
(1)根据以上信息填好下列2×2联表,并判断出有多大的把握认为学生成绩优良与班级有关?
(2)以班级分层抽样,抽取成绩优良的5人参加座谈,现从5人中随机选3人来作书面发言,求发言人至少有2人来自甲班的概率.
(以下临界值及公式仅供参考${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d)
(1)根据以上信息填好下列2×2联表,并判断出有多大的把握认为学生成绩优良与班级有关?
| 是否 优良 班级 | 优良 (人数) | 非优良 (人数) | 合计 |
| 甲 | |||
| 乙 | |||
| 合计 |
| P(K2≥k) | 0.10 | 0.05 | 0.010 |
| k | 2.706 | 3.841 | 6.635 |