题目内容
12.解不等式:log${\;}_{\frac{1}{2}}$(x+1)+log${\;}_{\frac{1}{2}}$+(x-6)>log${\;}_{\frac{1}{2}}$2(x+6).分析 由对数函数的性质化对数不等式为不等式组得答案.
解答 解:∵log${\;}_{\frac{1}{2}}$(x+1)+log${\;}_{\frac{1}{2}}$+(x-6)>log${\;}_{\frac{1}{2}}$2(x+6),
∴log${\;}_{\frac{1}{2}}$(x+1)(x-6)>log${\;}_{\frac{1}{2}}$2(x+6),
∴$\left\{\begin{array}{l}{x-6>0}\\{x+1>0}\\{x+6>0}\\{(x+1)(x-6)<2(x+6)}\end{array}\right.$,
解得6<x<9,
故不等式的解集为(6,9).
点评 本题考查对数不等式的解法,考查了对数函数的性质,是基础题.
练习册系列答案
相关题目
17.△ABC的外接圆半径为R,C=60°,则$\frac{a+b}{R}$的取值范围是( )
| A. | [$\sqrt{3}$,2$\sqrt{3}$] | B. | [$\sqrt{3}$,2$\sqrt{3}$) | C. | ($\sqrt{3}$,2$\sqrt{3}$] | D. | ($\sqrt{3}$,2$\sqrt{3}$) |
18.数列2014,2015,1,-2014,…;从第二项起,每一项都等于它的前后两项之和,则该数列的前2015项之和等于( )
| A. | 2014 | B. | 2015 | C. | 1 | D. | 0 |