题目内容
17.△ABC的外接圆半径为R,C=60°,则$\frac{a+b}{R}$的取值范围是( )| A. | [$\sqrt{3}$,2$\sqrt{3}$] | B. | [$\sqrt{3}$,2$\sqrt{3}$) | C. | ($\sqrt{3}$,2$\sqrt{3}$] | D. | ($\sqrt{3}$,2$\sqrt{3}$) |
分析 先由正弦定理和两角和与差的正弦公式得到$\frac{a+b}{R}$=2$\sqrt{3}$sin(A+30°),再根据正弦函数的图象和性质即可求出.
解答 解:在△ABC中,由正弦定理可得$\frac{a}{sinA}$=$\frac{b}{sinB}$=2R,
∴a=2RsinA,b=2RsinB,
∴$\frac{a+b}{R}$=2sinA+2sinB=2sinA+2sin(120°-A)=2(sinA+$\frac{\sqrt{3}}{2}$cosA+$\frac{1}{2}$sinA)=2$\sqrt{3}$($\frac{\sqrt{3}}{2}$sinA+$\frac{1}{2}$cosA)=2$\sqrt{3}$sin(A+30°),
∵C=60°,
∴0°<A<120°,
∴30°<A+30°<150°,
∴$\frac{1}{2}$<sin(A+30°)≤1,
∴$\sqrt{3}$<2$\sqrt{3}$sin(A+30°)≤2$\sqrt{3}$,
故选:C.
点评 本题考查了正弦定理和两角和差的正弦公式以及诱导公式,属于中档题.
练习册系列答案
相关题目
7.已知tanα=$\sqrt{2}$,则cosαsinα=( )
| A. | $\frac{\sqrt{2}}{3}$ | B. | -$\frac{\sqrt{2}}{2}$ | C. | $\frac{1}{3}$ | D. | ±$\frac{\sqrt{2}}{3}$ |
3.已知$\overrightarrow a$=(1,1,1),$\overrightarrow b$=(0,y,1)(0≤y≤1),则cos<$\overrightarrow a$,$\overrightarrow b$>最大值为( )
| A. | $\frac{{\sqrt{3}}}{3}$ | B. | $\frac{{\sqrt{2}}}{3}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $\frac{{\sqrt{6}}}{3}$ |