题目内容
3.已知数列{an}的前n项和为Sn,a1=2,对任意正整数m,n,都有Sm+n=SmSn,则{an}的通项公式为an=$\left\{\begin{array}{l}{2,n=1}\\{{2}^{n-1},n≥2}\end{array}\right.$.分析 a1=2,对任意正整数m,n,都有Sm+n=SmSn,取m=1,可得Sn+1=2Sn,利用等比数列的通项公式可得Sn,再利用递推关系即可得出.
解答 解:a1=2,对任意正整数m,n,都有Sm+n=SmSn,
取m=1,则:Sn+1=2Sn,
∴数列{Sn}是等比数列,首项为2,公比为2,
∴Sn=2n.
n≥2时,an=Sn-Sn-1=2n-2n-1=2n-1.
则{an}的通项公式为an=$\left\{\begin{array}{l}{2,n=1}\\{{2}^{n-1},n≥2}\end{array}\right.$.
故答案为:$\left\{\begin{array}{l}{2,n=1}\\{{2}^{n-1},n≥2}\end{array}\right.$.
点评 本题考查了递推关系、等比数列的通项公式,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
13.复数z1,z2在复平面内对应的点的坐标分别为(0,2)(1,-1),z=$\frac{{z}_{1}}{\overline{{z}_{2}}}$,则复数z的实部与虚部之和为( )
| A. | $\sqrt{2}$ | B. | 1+i | C. | 1 | D. | 2 |
11.已知函数f(x)=2cos(ωx+θ)(0<θ<π,ω>0)为奇函数,其图象与直线y=2相邻两交点的距离为π,则函数f(x)( )
| A. | 在[${\frac{π}{6}$,$\frac{π}{3}}$]上单调递减 | B. | 在[${\frac{π}{6}$,$\frac{π}{3}}$]上单调递增 | ||
| C. | 在[-$\frac{π}{6}$,$\frac{π}{4}}$]上单调递减 | D. | 在[-$\frac{π}{6}$,$\frac{π}{4}}$]上单调递增 |
13.已知,点A(-2,-5),B(6,6),点P在y轴上,且∠APB=90°,则点P的坐标为( )
| A. | (0,-6) | B. | (0,7) | C. | (0,-6)或(0,7) | D. | (-6,0)或(7,0) |