题目内容
使不等式sinx≥
(x∈R)成立的x的集合是( )
| ||
| 2 |
A、{x|x≥
| ||||
B、{x|2kπ+
| ||||
C、{x|
| ||||
D、{x|x≥2kπ+
|
考点:正弦函数的图象
专题:三角函数的图像与性质
分析:根据不等式sinx≥
,结合正弦函数的图象可得x的范围.
| ||
| 2 |
解答:
解:根据不等式sinx≥
,结合正弦函数的图象可得2kπ+
≤x≤2kπ+
π,k∈Z,
故选:B.
| ||
| 2 |
| π |
| 3 |
| 2 |
| 3 |
故选:B.
点评:本题主要考查正弦函数的图象和性质,属于基础题.
练习册系列答案
相关题目
已知函数f(x)=3x3-ax2+x-5在区间[1,2]上单调递减,则a的取值范围是( )
A、[5,
| ||
B、(-∞,5)∪(
| ||
| C、[5,+∞) | ||
D、[
|
已知f(x)=
,若0<x1<x2<x3,则
、
、
的大小关系是( )
| 4-x2 |
| f(x1) |
| x1 |
| f(x2) |
| x2 |
| f(x3) |
| x3 |
A、
| ||||||
B、
| ||||||
C、
| ||||||
D、
|
在等差数列{an}中,已知ak=1,ak+1=sin2θ,则ak+2=( )
| A、cos2θ |
| B、-cos2θ |
| C、cos2θ |
| D、-cos2θ |
现有语文、数学、英语、物理和化学共5本书,从中任取1本,取出的是理科书的概率为( )
A、
| ||
B、
| ||
C、
| ||
D、
|
已知曲线C1的参数方程为
(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ2-2ρcosθ-2ρsinθ+1=0,设曲线C1,C2相交于两点A,B,则过AB中点且与直线AB垂直的直线的直角标方程为( )
|
A、y=-
| ||||||||
B、y=
| ||||||||
C、y=-
| ||||||||
D、y=
|