题目内容

7.如图,平面SAB为圆锥的轴截面,O为底面圆的圆心,M为母线SB的中点,N为底面圆周上的一点,AB=4,SO=6.
(1)求该圆锥的侧面积;
(2)若直线SO与MN所成的角为30°,求MN的长.

分析 (1)由题意知SO⊥平面ABN,在RT△SOB中,由条件和勾股定理求出母线BS,由圆锥的侧面积公式求出该圆锥的侧面积;
(2)取OB的中点C,连接MC、NC,由条件和中位线定理可得MC∥SO、MC的长,由条件和线面角的定理求出∠NMC,在RT△MCN中由余弦函数求出MN的长.

解答 解:(1)由题意知,SO⊥平面ABN,
在RT△SOB中,OB=$\frac{1}{2}$AB=2,SO=6,
∴BS=$\sqrt{{2}^{2}+{6}^{2}}$=$2\sqrt{10}$,
∴该圆锥的侧面积S=π•OB•BS=$4\sqrt{10}π$;
(2)取OB的中点C,连接MC、NC,
∵M为母线SB的中点,∴MC为△SOB的中位线,
∴MC∥SO,MC=$\frac{1}{2}$SO=3,
∵SO⊥平面ABN,∴MC⊥平面ABN,
∵NC?平面ABN,∴MC⊥NC,
∵直线SO与MN所成的角为30°,∴∠NMC=30°,
在RT△MCN中,$\frac{MC}{MN}=cos30°$,
∴MN=$\frac{MC}{cos30°}$=$\frac{3}{\frac{\sqrt{3}}{2}}$=$2\sqrt{3}$.

点评 本题考查圆锥的侧面积公式,线面角的定理,以及线面垂直的定义,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网