题目内容

16.在△ABC中,角A,B,C所对的边分别为a,b,c,若1+$\frac{tanA}{tanB}$=$\frac{2c}{b}$,则A=(  )
A.30°?B.45°?C.60°?D.120°?

分析 由同角三角函数基本关系式,正弦定理,两角和的正弦函数公式化简已知可求cosA,结合A的范围,由特殊角的三角函数值即可求解.

解答 解:∵1+$\frac{tanA}{tanB}$=$\frac{2c}{b}$,
∴1+$\frac{sinAcosB}{cosAsinB}$=$\frac{2sinC}{sinB}$,可得:$\frac{cosAsinB+sinAcosB}{cosAsinB}$=$\frac{2sinC}{sinB}$,
∴$\frac{sinC}{cosAsinB}$=$\frac{2sinC}{sinB}$,
∴cosA=$\frac{1}{2}$,
∵A∈(0°,180°),
∴A=60°.
故选:C.

点评 本题主要考查了同角三角函数基本关系式,正弦定理,两角和的正弦函数公式,特殊角的三角函数值在解三角形中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网