题目内容

5.设函数$f(x)=\left\{\begin{array}{l}{x^2}+x,x<0\\-{x^2},x≥0\end{array}\right.$,g(x)为定义在R上的奇函数,且当x<0时,g(x)=x2-2x-5,若f(g(a))≤2,则实数a的取值范围是(  )
A.$({-∞,-1}]∪[{0,2\sqrt{2}-1}]$B.$[{-1,2\sqrt{2}-1}]$C.(-∞,-1]∪(0,3]D.[-1,3]

分析 先将不等式转化为g(a)≥-2,再根据函数的解析式,分类求解.

解答 解:设x>0,则-x<0,g(x)=-g(-x)=-x2-2x+5,
由题意,a<0,a2+a=2,∴a=-2,
∵f(g(a))≤2,$f(x)=\left\{\begin{array}{l}{x^2}+x,x<0\\-{x^2},x≥0\end{array}\right.$,∴g(a)≥-2,
∴$\left\{\begin{array}{l}{a<0}\\{{a}^{2}-2a-5≥-2}\end{array}\right.$或$\left\{\begin{array}{l}{a>0}\\{-{a}^{2}-2a+5≥-2}\end{array}\right.$或a=0,
∴a≤-1或0≤a≤2$\sqrt{2}$-1,
故选A.

点评 本题考查不等式的解法,考查函数的性质,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网