题目内容

设数列{an}是公差大于零的等差数列,已知a1=2,a3=a22-10.
(1)求{an}的通项公式;
(2)设数列{bn}是以函数f(x)=4sin2πx的最小正周期为首项,以3为公比的等比数列,求数列{an•bn}的前n项和Sn
考点:数列的求和,等差数列的性质
专题:等差数列与等比数列
分析:(1)由已知条件,利用等差数列的通项公式列出方程组,求出等差数列的首项和公差,由此能求出{an}的通项公式.
(2)由已知条件利用三角函数求出数列{bn}首项为1从而bn=3n-1,得到an•bn=2n•3n-1,由此利用错位相减法能求出数列{an•bn}的前n项和Sn
解答: 解:(1)设{an}的公差为d,d>0,
∵a1=2,a3=a22-10,
a1=2
a1+2d=(a1+d)2-10
,解得a=2或d=-4(舍).(5分)
∴an=2+(n-1)×2=2n.(6分)
(2)∵y=4sin2πx=4×
1-cos2πx
2

=-2cos2πx+2,
其最小正周期为
=1,
∴首项为b1=1.(7分)
∵公比为q=3,从而bn=3n-1
∴an•bn=2n•3n-1,(8分)
∴Sn=2•30+4•3+6•32+…+2n•3n-1,①
3Sn=2•3+4•32+6•33+…+2n•3n,②
①-②,得:-2Sn=2+2(3+32+33+…+3n-1)-2n•3n
=2+2×
3(1-3n-1)
1-3
-2n•3n
=2+3n-3-2n•3n
∴Sn=
(2n-1)•3n+1
2
.(12分)
点评:本题考查数列的通项公式和前n项和公式的求法,是中档题,解题时要认真审题,注意错位相减法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网