题目内容

在数列{an}中,an>0,a12=
1
a+2
,且
2(an-an+1)(an+an+1)
=2an•an+1
(1)求关于a的an
1
2
的充要条件;
(2)当a=-1时,求证:
1
a
2
1
+1
1
a
2
2
+1
1
a
2
3
+1
1
a
2
n-1
+1
1
a
2
n
+1
<an+1
考点:等差数列与等比数列的综合,必要条件、充分条件与充要条件的判断
专题:点列、递归数列与数学归纳法
分析:(1)依题意,可整理得有
1
an+12
-
1
an2
=2,易判断数列{
1
an2
}是以a+2为首项,2为公差的等差数列,从而可求得
1
an2
=2n+a,再由an
1
2
即可求得a的取值范围;
(2)当a=-1时,
1
an2
=2n-1,an+1=
1
2n+1
,于是可得
1
a
2
1
+1
1
a
2
2
+1
1
a
2
3
+1
1
a
2
n-1
+1
1
a
2
n
+1
=
1
2
3
4
5
6
2n-1
2n
,再利用数学归纳法证明
1
2
3
4
5
6
2n-1
2n
1
2n+1
=an+1即可.
解答: 解:(1)∵
2(an-an+1)(an+an+1)
=2an•an+1,an>0,
等号两端平方得:2an2-2an+12=4an2•2an+12
两端同除以2an2•2an+12,有
1
an+12
-
1
an2
=2,
1
a12
=a+2,
∴数列{
1
an2
}是以a+2为首项,2为公差的等差数列,
1
an2
=(a+2)+2(n-1)=2n+a,
又an
1
2
,∴an2
1
4
,即
1
2n+a
1
4

整理得:0<2n+a<4,∴-2n<a<4-2n(n∈N*).
(2)当a=-1时,
1
an2
=2n-1,an+1=
1
2n+1

∴an2=
1
2n-1
,an2+1=
2n
2n-1
1
an2+1
=
2n-1
2n

1
a
2
1
+1
1
a
2
2
+1
1
a
2
3
+1
1
a
2
n-1
+1
1
a
2
n
+1
=
1
2
3
4
5
6
2n-1
2n

下面用数学归纳法证明
1
2
3
4
5
6
2n-1
2n
1
2n+1
=an+1
①当n=1时,
1
2
1
3
,不等式成立;
②假设n=k时,
1
2
3
4
5
6
…•
2k-1
2k
1
2k+1

则当n=k+1时,
1
2
3
4
5
6
…•
2k-1
2k
2(k+1)-1
2(k+1)
1
2k+1
2(k+1)-1
2(k+1)
=
2k+1
2k+2

∵(2k+2)2-(2k+1)(2k+3)=1>0,
2k+1
2k+2
1
2k+3
=a(n+1)+1,即n=k+1时,不等式也成立,
综上所述,对任意n∈N*
1
a
2
1
+1
1
a
2
2
+1
1
a
2
3
+1
1
a
2
n-1
+1
1
a
2
n
+1
<an+1
点评:本题考查等差数列与等比数列的综合,着重考查递推关系的应用,特别是等差关系的判断及通项公式的应用,突出数学归纳法的证明,属于难题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网