题目内容
已知命题p:x2+2x-3>0;命题q:x>a,且?q的一个充分不必要条件是?p,则实数a的取值范围是( )
| A、(-∞,1] |
| B、(-∞,-3] |
| C、[-1,+∞) |
| D、[1,+∞) |
考点:必要条件、充分条件与充要条件的判断,命题的否定
专题:简易逻辑
分析:先求出p的等价条件,利用?q的一个充分不必要条件是?p,即可求a的取值范围.
解答:
解:由x2+2x-3>0得x>1或x<-3,
即p:x>1或x<-3,¬p:-3≤x≤1,
∵q:x>a,∴¬q:x≤a,
若?q的一个充分不必要条件是?p,
则¬p⇒¬q成立,但¬q⇒¬p不成立,
∴a≥1,
故选:D.
即p:x>1或x<-3,¬p:-3≤x≤1,
∵q:x>a,∴¬q:x≤a,
若?q的一个充分不必要条件是?p,
则¬p⇒¬q成立,但¬q⇒¬p不成立,
∴a≥1,
故选:D.
点评:本题主要考查充分条件和必要条件的判断,结合不等式的解法是解决本题的关键.熟练掌握命题的否定的形式.
练习册系列答案
相关题目
若A={0,1,2,3},B={1,2,4,5},则集合A∩B的子集的个数为( )
| A、1 | B、2 | C、3 | D、4 |
集合A={x∈N|
≥1},B={x∈N|log2(x+1)≤1},则集合A∩B的子集个数为( )
| 3 |
| x |
| A、8 | B、4 | C、3 | D、2 |
设集合A={x|lg(x2-8)<1},B={x|2x<
},则A∩B=( )
| 1 |
| 4 |
A、{x|-3
| ||||
B、{x|-3
| ||||
C、{x|2
| ||||
D、{x|2
|
下列解析式中不是数列1,-1,1,-1,1,…的通项公式的是( )
| A、an=(-1)n | |||||
| B、an=(-1)n+1 | |||||
| C、an=(-1)n-1 | |||||
D、an=
|