题目内容
在等差数列{an}中,2a1+3a2=11,2a3=a2+a6-4,其前n项和为Sn.
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=
,求数列{bn}的前n项和Tn.
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=
| 1 |
| Sn+n |
考点:数列的求和
专题:等差数列与等比数列
分析:(1)设等差数列{an}的公差为d,由已知列方程组求得首项和公差,代入等差数列的通项公式得答案;
(2)求出等差数列的前n项和Sn=n2,代入bn=
=
=
,然后利用裂项相消法数列{bn}的前n项和Tn.
(2)求出等差数列的前n项和Sn=n2,代入bn=
| 1 |
| Sn+n |
| 1 |
| n2+n |
| 1 |
| n(n+1) |
解答:
解:(1)设等差数列{an}的公差为d,
由2a1+3a2=11,2a3=a2+a6-4,得
2a1+3a2=2a1+3(a1+d)=5a1+3d=11 ①,
2a3=a2+a6-4,即2(a1+2d)=a1+d+a1+5d-4 ②,
联立①②解得d=2,a1=1,
∴an=a1+(n-1)d=1+(n-1)×2=2n-1;
(2)Sn=na1+
n(n-1)d=n×1+
n(n-1)×2=n2,
bn=
=
=
=
-
,
∴Tn=(
-
)+(
-
)+(
-
)+…+(
-
)=1-
=
.
由2a1+3a2=11,2a3=a2+a6-4,得
2a1+3a2=2a1+3(a1+d)=5a1+3d=11 ①,
2a3=a2+a6-4,即2(a1+2d)=a1+d+a1+5d-4 ②,
联立①②解得d=2,a1=1,
∴an=a1+(n-1)d=1+(n-1)×2=2n-1;
(2)Sn=na1+
| 1 |
| 2 |
| 1 |
| 2 |
bn=
| 1 |
| Sn+n |
| 1 |
| n2+n |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴Tn=(
| 1 |
| 1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+1 |
| n |
| n+1 |
点评:本题考查了等差数列的通项公式,训练了裂项相消法求数列的前n项和,是中档题.
练习册系列答案
相关题目