题目内容

6.已知向量$\overrightarrow a=({cos\frac{3x}{2},sin\frac{3x}{2}}),\overrightarrow b=({cos\frac{x}{2},sin\frac{x}{2}})$.
(1)已知$\overrightarrow a$∥$\overrightarrow b$且$x∈[{0,\frac{π}{2}}]$,求x;
(2)若$f(x)=\overrightarrow a•\overrightarrow b$,写出f(x)的单调递减区间.

分析 (1)由$\overrightarrow{a}∥\overrightarrow{b}$,根据平行向量的坐标关系以及两角差的正弦公式即可得出sinx=0,这样根据x的范围便可得出x的值;
(2)进行向量数量积的坐标运算,根据两角差的余弦公式便可得出f(x)=cosx,从而可以写出余弦函数的单调递减区间.

解答 解:(1)∵$\overrightarrow{a}$∥$\overrightarrow{b}$;
∴cos$\frac{3x}{2}$sin$\frac{x}{2}$-sin$\frac{3x}{2}$cos$\frac{x}{2}$=0,即sinx=0;
∵x∈[0,$\frac{π}{2}$];
∴x=0;
(2)f(x)=$\overrightarrow{a}•\overrightarrow{b}$=cos$\frac{3x}{2}$cos$\frac{x}{2}$+sin$\frac{3x}{2}$sin$\frac{x}{2}$=cosx;
∴f(x)的单调递减区间为[2kπ,2kπ+π],k∈Z.

点评 考查平行向量的坐标关系,以及两角和与差的正余弦公式,已知三角函数值求角,向量数量积的坐标运算,以及余弦函数的单调区间.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网