题目内容
3.分析 利用两次余弦公式,求得3cosA+sinA=1,将∠C=$\frac{3π}{4}$∠A,代入求得cosA=$\frac{3}{5}$的值,可求得BD.
解答 解:在△ABD中由余弦定理可知:BD2=AB2+AD2-2AB•AD•cosA,
在△CDB中与余弦定理可知:BD2=DC2+BC2-2AB•AD•cosC,
将AB=CD=1,AD=$\sqrt{2}$BC=2代入,整理得:2cosA-$\sqrt{2}$cosC=1,∠A+∠C=$\frac{3π}{4}$,
2cosA-$\sqrt{2}$cos($\frac{3π}{4}$-A)=1,
整理得:3cosA+sinA=1,
两边平方(3cosA+sinA)2=9cos2A+6cosAsinA+sin2A=cos2A+sin2A,
整理得:sinA=-$\frac{4}{3}cosA$,
cosA=$\frac{3}{5}$,
BD=$\sqrt{4+1-4×\frac{3}{5}}$,
BD=$\frac{\sqrt{65}}{5}$,
故答案为:$\frac{\sqrt{65}}{5}$.
点评 本题考查余弦定理及三角恒等变换,属于中档题.
练习册系列答案
相关题目
14.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1的渐近线方程为y=$±\frac{1}{3}x$,则此双曲线的离心率为( )
| A. | $\frac{{2\sqrt{2}}}{3}$ | B. | $\frac{{\sqrt{10}}}{3}$ | C. | 3 | D. | $\sqrt{10}$ |
11.已知圆C的圆心与双曲线4x2-$\frac{4}{3}{y^2}$=1的左焦点重合,又直线4x-3y-6=0与圆C相切,则圆C的标准方程为( )
| A. | (x-1)2+y2=4 | B. | (x+1)2+y2=2 | C. | (x+1)2+y2=1 | D. | (x+1)2+y2=4 |
18.数列{an}满足a1=1,且an+1=a1+an+n(n∈N*),则$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{2016}}$等于( )
| A. | $\frac{2015}{2016}$ | B. | $\frac{4028}{2015}$ | C. | $\frac{4032}{2017}$ | D. | $\frac{2014}{2015}$ |
8.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线的斜率为-2,则C的离心率e=( )
| A. | $\frac{2\sqrt{3}}{3}$ | B. | $\frac{\sqrt{5}}{2}$ | C. | 2 | D. | $\sqrt{5}$ |