题目内容

某市某棚户区改造建筑用地平面示意图如图所示.经规划调研确定,棚改规划建筑用地区域是半径为R的圆面.该圆面的内接四边形ABCD是原棚户建筑用地,测量可知边界AB=AD=4千米,BC=6千米,CD=2千米,
(1)求原棚户区建筑用地ABCD中对角线AC的长度;
(2)请计算原棚户区建筑用地ABCD的面积及圆面的半径R的值.
考点:余弦定理,正弦定理
专题:三角函数的求值
分析:(1)连接AC,由四边形ABCD为圆内接四边形,利用圆内接四边形对角互补得到∠ABC+∠ADC=180°,在三角形ABC与三角形ADC中,分别利用余弦定理表示出AC2,将各自的值代入求出cos∠ABC的值,进而确定出∠ABC与∠ADC的度数,代入计算即可求出AC的长;
(2)四边形ABCD面积=三角形ABC面积+三角形ADC面积,求出即可;在三角形ABC中,利用正弦定理即可求出R的值.
解答: 解:(1)连接AC,
∵四边形ABCD为圆的内接四边形,
∴∠ABC+∠ADC=180°,
∵AB=AD=4千米,BC=6千米,CD=2千米,
∴由余弦定理得:AC2=42+62-2×4×6cos∠ABC=42+22-2×2×4cos∠ADC,
∴cos∠ABC=
1
2

∵∠ABC为三角形内角,
∴∠ABC=60°,∠ADC=120°,
∴AC2=42+62-2×4×6×
1
2
=28,即AC=2
7
(千米);
(2)根据题意得:S四边形ABCD=
1
2
×4×6sin60°+
1
2
×2×4sin120°=8
3
(平方千米),
由正弦定理得:2R=
AC
sinB
=
2
7
3
2
=
4
21
3
(千米),
则R=
2
21
3
(千米).
点评:此题考查了正弦、余弦定理,以及特殊角的三角函数值,熟练掌握定理是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网