题目内容

“a≤0”是“函数f(x)=|(ax-1)x|在区间(0,+∞)内单调递增”的(  )
A、充分不必要条件
B、必要不充分条件
C、充分必要条件
D、既不充分也不必要条件
考点:必要条件、充分条件与充要条件的判断
专题:函数的性质及应用,简易逻辑
分析:对a分类讨论,利用二次函数的图象与单调性、充要条件即可判断出.
解答: 解:当a=0时,f(x)=|x|,在区间(0,+∞)内单调递增.
当a<0时,f(x)=(-ax+1)x=-a(x-
1
a
)x

结合二次函数图象可知函数f(x)=|(ax-1)x|在区间(0,+∞)内单调递增.
若a>0,则函数f(x)=|(ax-1)x|,其图象如图

它在区间(0,+∞)内有增有减,
从而若函数f(x)=|(ax-1)x|在区间(0,+∞)内单调递增则a≤0.
∴a≤0是”函数f(x)=|(ax-1)x|在区间(0,+∞)内单调递增”的充要条件.
故选:C.
点评:本题考查了二次函数的图象与单调性、充要条件,考查了数形结合的思想方法,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网