题目内容
求和:Sn=1+(1+
)+(1+
+
)+[1+
+
+…+(
)n-1].
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2 |
考点:数列的求和
专题:等差数列与等比数列
分析:先求出1+
+
+…+(
)n-1=2-
,再利用分组求和法求Sn的值.
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 2n-1 |
解答:
解:∵1+
+
+…+(
)n-1=
=2-
,
∴Sn=2n-(1+
+
+…+
)=2n-
=2n-2+
.
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2 |
1-(
| ||
1-
|
| 1 |
| 2n-1 |
∴Sn=2n-(1+
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n-1 |
1-
| ||
1-
|
| 1 |
| 2n-1 |
点评:本题考查数列的前n项和的求法,是中档题,解题时要认真审题,注意分组求和法的合理运用.
练习册系列答案
相关题目