题目内容
已知数列{an}满足
=(an+1,n+1),
=(an,n)且
-
=λ(2,1)
(1)证明:数列{an}为等差数列;
(2)若数列{an}的首项a1为奇数,前n项和为Sn,若Sn最小值为-16,求a1.
| u |
| v |
| u |
| v |
(1)证明:数列{an}为等差数列;
(2)若数列{an}的首项a1为奇数,前n项和为Sn,若Sn最小值为-16,求a1.
考点:数列的求和,等差数列的性质
专题:等差数列与等比数列
分析:(1)由已知得
,所以an+1-a=2,由此能证明数列{an}为等差数列.
(2)由已知条件得Sn=na1+
×2=(n-
)2-
,所以
=16,由此能求出a1.
|
(2)由已知条件得Sn=na1+
| n(n-1) |
| 2 |
| a1-1 |
| 2 |
| (a1-1)2 |
| 4 |
| (a1-1)2 |
| 4 |
解答:
(1)证明:∵数列{an}满足
=(an+1,n+1),
=(an,n)且
-
=λ(2,1),
∴
,∴an+1-a=2,
∴数列{an}为等差数列.
(2)解:数列{an}的首项a1为奇数,前n项和为Sn,Sn最小值为-16,
∴Sn=na1+
×2
=n2+(a1-1)n
=(n-
)2-
,
∴
=16,
解得a1=9,或a1=-7.
| u |
| v |
| u |
| v |
∴
|
∴数列{an}为等差数列.
(2)解:数列{an}的首项a1为奇数,前n项和为Sn,Sn最小值为-16,
∴Sn=na1+
| n(n-1) |
| 2 |
=n2+(a1-1)n
=(n-
| a1-1 |
| 2 |
| (a1-1)2 |
| 4 |
∴
| (a1-1)2 |
| 4 |
解得a1=9,或a1=-7.
点评:本题考查等差数列的证明,考查数列的首项的求法,解题时要认真审题,注意配方法的合理运用.
练习册系列答案
相关题目