题目内容
15.函数$y=2\sqrt{2}sin(ωx+φ)$(其中ω>0,0<φ<π)的图象的一部分如图所示,则( )| A. | $ω=\frac{π}{8}{,_{\;}}φ=\frac{3π}{4}$ | B. | $ω=\frac{π}{8}{,_{\;}}φ=\frac{π}{4}$ | C. | $ω=\frac{π}{4}{,_{\;}}φ=\frac{π}{2}$ | D. | $ω=\frac{π}{4}{,_{\;}}φ=\frac{3π}{4}$ |
分析 先利用图象中求得函数的周期,求得ω,最后根据x=2时取最大值,求得φ,即可得解.
解答 解:如图根据函数的图象可得:函数的周期为(6-2)×4=16,
又∵ω>0,
∴ω=$\frac{2π}{T}$=$\frac{π}{8}$,
当x=2时取最大值,即2$\sqrt{2}$sin(2×$\frac{π}{8}$+φ)=2$\sqrt{2}$,可得:2×$\frac{π}{8}$+φ=2kπ+$\frac{π}{2}$,k∈Z,
∴φ=2kπ+$\frac{π}{4}$,k∈Z,
∵0<φ<π,
∴φ=$\frac{π}{4}$,
故选:B.
点评 本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,考查了学生基础知识的运用和图象观察能力,属于基本知识的考查.
练习册系列答案
相关题目
10.函数$f(x)=sin(\frac{π}{2}-x)$是( )
| A. | 奇函数,且在区间$(0,\frac{π}{2})$上单调递增 | B. | 奇函数,且在区间$(0,\frac{π}{2})$上单调递减 | ||
| C. | 偶函数,且在区间$(0,\frac{π}{2})$上单调递增 | D. | 偶函数,且在区间$(0,\frac{π}{2})$上单调递减 |