题目内容
6.已知复数$z=-\frac{1}{2}+\frac{{\sqrt{3}}}{2}i$,则复数$\overline z+|z|$在复平面内对应的点位于( )| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
分析 由复数z求出$\overline{z}$和|z|,代入$\overline z+|z|$求出在复平面内对应的点的坐标得答案.
解答 解:∵$z=-\frac{1}{2}+\frac{{\sqrt{3}}}{2}i$,∴$\overline{z}=-\frac{1}{2}-\frac{\sqrt{3}}{2}i$,$|z|=\sqrt{(-\frac{1}{2})^{2}+(\frac{\sqrt{3}}{2})^{2}}=1$,
∴$\overline z+|z|$=$-\frac{1}{2}-\frac{\sqrt{3}}{2}i+1=\frac{1}{2}-\frac{\sqrt{3}}{2}i$.
则复数$\overline z+|z|$在复平面内对应的点的坐标为:($\frac{1}{2}$,$-\frac{\sqrt{3}}{2}$),位于第四象限.
故选:D.
点评 本题考查了复数的基本概念,考查了复数的代数表示法及其几何意义,是基础题.
练习册系列答案
相关题目
17.已知$\overrightarrow{a}$与$\overrightarrow{b}$均为单位向量,其夹角为θ,若|$\overrightarrow{a}$$-\overrightarrow{b}$|>1,则θ的取值范围是( )
| A. | $\frac{π}{6}$<θ$≤\frac{π}{2}$ | B. | $\frac{π}{3}$<θ$≤\frac{π}{2}$ | C. | $\frac{π}{3}$<θ≤π | D. | $\frac{π}{6}$<θ≤π |
14.已知数列{an}满足${2^{{a_{n-1}}}}+{2^{{a_{n+1}}}}={2^{1+{a_n}}},n≥2,n∈{N^*}$,且a1=1,a2=2,则a16=( )
| A. | 4 | B. | 5 | C. | 6 | D. | 8 |
15.若f1(x)=sinx,f2(x)=f1′(x),f3(x)=f2′(x),…fk+1(x)=fk′(x),则f2007($\frac{π}{3}$),( )
| A. | -$\frac{\sqrt{3}}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{1}{2}$ |