题目内容
2.已知F1、F2是椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左右焦点,P是椭圆上一点,且PF2⊥F1F2,∠PF1F2=$\frac{π}{6}$.则椭圆的离心率是( )| A. | $\frac{\sqrt{2}}{2}$ | B. | $\frac{\sqrt{3}}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{5}}{5}$ |
分析 PF2⊥F1F2,∠PF1F2=$\frac{π}{6}$,由勾股定理可知:|PF1|=2x,|F1F2|=$\sqrt{3}$x,由椭圆的定义可知:|PF1|+|PF2|=2a,|F1F2|=2c,即可求得a和c值,根据椭圆的离心率公式,即可求得椭圆的离心率.
解答 解:由题意可知:椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)焦点在x轴上,|PF2|=x,
PF2⊥F1F2,∠PF1F2=$\frac{π}{6}$,
∴|PF1|=2x,|F1F2|=$\sqrt{3}$x,
又|PF1|+|PF2|=2a,|F1F2|=2c,
∴2a=3x,2c=$\sqrt{3}$x,![]()
∴C的离心率为:e=$\frac{c}{a}$=$\frac{\sqrt{3}}{3}$.
故选B.
点评 本题考查椭圆的标准方程及简单几何性质,考查勾股定理的应用,考查数形结合思想,属于中档题,
练习册系列答案
相关题目
10.已知命题p:函数f(x)=|4x-a|-ax(a>0)存在最小值;命题q:关于x的方程2x2-(2a-2)x+3a-7=0有实数根.则使“命题p∨?q为真,p∧?q为假”的一个必要不充分的条件是( )
| A. | 3≤a<5 | B. | 0<a<4 | C. | 4<a<5或0≤a≤3 | D. | 3<a<5或0≤a<3 |