题目内容

10.已知函数$f(x)=Asin(ωx+φ)(ω>0,0<φ<\frac{π}{2})$的部分图象如图所示.
(1)求函数的解析式;
(2)当$x∈[{-\frac{π}{2},\frac{π}{12}}]$时,求函数$y=f({x+\frac{π}{12}})-\sqrt{2}f({x+\frac{π}{3}})$的最值.

分析 (1)由函数f(x)的部分图象,求出最小正周期T得ω;由f($\frac{π}{3}$)=A求出φ,由f(0)=2求出A即得f(x)解析式;
(2)化函数y为正弦型函数,求出$x∈[{-\frac{π}{2},\frac{π}{12}}]$时函数y的最大、最小值即可.

解答 解:(1)由函数f(x)=Asin(ωx+φ)的部分图象知,
$\frac{3}{4}$T=$\frac{11π}{6}$-$\frac{π}{3}$=$\frac{3π}{2}$,
∴T=2π,
∴ω=$\frac{2π}{T}$=1;
又f($\frac{π}{3}$)=Asin($\frac{π}{3}$+φ)=A,且0<φ<$\frac{π}{2}$,
∴φ=$\frac{π}{6}$;
∴f(0)=Asin$\frac{π}{6}$=2,
∴A=4;
∴f(x)=4sin(x+$\frac{π}{6}$);
(2)函数$y=f({x+\frac{π}{12}})-\sqrt{2}f({x+\frac{π}{3}})$
=4sin(x+$\frac{π}{12}$+$\frac{π}{6}$)-4$\sqrt{2}$sin(x+$\frac{π}{3}$+$\frac{π}{6}$)
=4sin(x+$\frac{π}{4}$)-4$\sqrt{2}$sin(x+$\frac{π}{2}$)
=4×$\frac{\sqrt{2}}{2}$sinx+4×$\frac{\sqrt{2}}{2}$cosx-4$\sqrt{2}$cosx
=2$\sqrt{2}$sinx-2$\sqrt{2}$cosx
=4sin(x-$\frac{π}{4}$);
当$x∈[{-\frac{π}{2},\frac{π}{12}}]$时,x-$\frac{π}{4}$∈[-$\frac{3π}{4}$,-$\frac{π}{6}$];
∴x-$\frac{π}{4}$=-$\frac{π}{2}$,即x=-$\frac{π}{4}$时,函数y取得最小值-4;
x-$\frac{π}{4}$=-$\frac{π}{6}$,即x=$\frac{π}{12}$时,函数y取得最大值-2.

点评 本题考查了正弦型函数的图象与性质的应用问题,也考查了三角恒等变换的应用问题,是综合题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网