题目内容

函数y=-
1
x
的图象按向量
a
=(1,0)平移之后得到的函数图象与函数y=2sinπx(-2≤x≤4)的图象所有交点的橫坐标之和等于(  )
A、2B、4C、6D、8
考点:函数y=Asin(ωx+φ)的图象变换
专题:压轴题,数形结合
分析:y1=
1
1-x
的图象由奇函数y=-
1
x
的图象向右平移1个单位而得,所以它的图象关于点(1,0)中心对称,再由正弦函数的对称中心公式,可得函数y2=2sinπx的图象的一个对称中心也是点(1,0),故交点个数为偶数,且每一对对称点的横坐标之和为2.由此不难得到正确答案.
解答: 解:函数y=-
1
x
的图象按向量
a
=(1,0)平移之后得到函数y1=
1
1-x
,y2=2sinπx的图象有公共的对称中心(1,0),作出两个函数的图象如图:
当1<x≤4时,y1<0,
而函数y2在(1,4)上出现1.5个周期的图象,
在(1,
3
2
)和(
5
2
7
2
)上是减函数;
在(
3
2
5
2
)和(
7
2
,4)上是增函数.
∴函数y1在(1,4)上函数值为负数,且与y2的图象有四个交点E、F、G、H,
相应地,y1在(-2,1)上函数值为正数,且与y2的图象有四个交点A、B、C、D,
且:xA+xH=xB+xG═xC+xF=xD+xE=2,故所求的横坐标之和为8,
故选:D.
点评:发现两个图象公共的对称中心是解决本题的入口,讨论函数y2=2sinπx的单调性找出区间(1,4)上的交点个数是本题的难点所在.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网