题目内容
20.已知各项为正数的数列{an}的前n项和Sn满足:Sn>1,6Sn=(an+1)(an+2)(n∈N*)(1)求数列{an}的通项公式;
(2)求证:$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{a{{\;}_{2}a}_{3}}$+…+$\frac{1}{a{{\;}_{n}a}_{n+1}}$<$\frac{1}{6}$.
分析 (1)6Sn=(an+1)(an+2)=an2+3an+2,得6Sn-1=(an-1+1)(an-1+2)=an-12+3an-1+2,两式作差,即可证明{an}为等差数列,从而求出an.
(2)由此利用裂项求和法能求出数列的前n项和,再放缩即可证明.
解答 解:(1)∵6Sn=(an+1)(an+2)=an2+3an+2,
∴6Sn-1=(an-1+1)(an-1+2)=an-12+3an-1+2,
∴(an+an-1)(an-an-1-3)=0,
∵an>0,∴an-an-1=3,
∴{an}为等差数列,
∵6S1=(a1+1)(a1+2)=a12+3a1+2,
∴a1=2,或a1=1
∵a1>1,∴a1=2,
∴an=3n-1,
(2)$\frac{1}{a{{\;}_{n}a}_{n+1}}$=$\frac{1}{(3n-1)(3n+2)}$=$\frac{1}{3}$($\frac{1}{3n-1}$-$\frac{1}{3n+2}$),
∴$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{a{{\;}_{2}a}_{3}}$+…+$\frac{1}{a{{\;}_{n}a}_{n+1}}$=$\frac{1}{3}$($\frac{1}{2}$-$\frac{1}{5}$+$\frac{1}{5}$-$\frac{1}{8}$+…+$\frac{1}{3n-1}$-$\frac{1}{3n+2}$)=$\frac{1}{3}$($\frac{1}{2}$-$\frac{1}{3n+2}$)<$\frac{1}{6}$
点评 本题考查数列的通项公式和前n项和公式的求法,解题时要认真审题,注意迭代法和裂项求和法和放缩法的合理运用.
练习册系列答案
相关题目
11.已知球面上的四点P、A、B、C,PA、PB、PC的长分别为3、4、5,且这三条线段两两垂直,则这个球的体积为( )
| A. | $\frac{{1000\sqrt{2}}}{3}π$ | B. | $\frac{{375\sqrt{2}}}{16}π$ | C. | 50π | D. | $\frac{{125\sqrt{2}}}{3}π$ |
8.空间的一个基底{a,b,c}所确定平面的个数为( )
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个以上 |
5.函数y=|x|-2的图象是( )
| A. | B. | C. | D. |