题目内容
设函数fn(x)=xn(1-x)3在[
,1]上的最大值为an(n=1,2,3…).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求证:对任何正整数n(n≥2),都有an≤
成立;
(Ⅲ)设数列{an}的前n项和为Sn,求证:对任意正整数n,都有Sn≤
成立.
| 1 |
| 4 |
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求证:对任何正整数n(n≥2),都有an≤
| 1 |
| (n+3)2 |
(Ⅲ)设数列{an}的前n项和为Sn,求证:对任意正整数n,都有Sn≤
| 91 |
| 256 |
考点:数列的求和,数列的函数特性
专题:等差数列与等比数列
分析:(Ⅰ)fn′(x)=xn-1(1-x)2[n-(n+3)x],由
(x)=0,知x=1或x=
,由导数性质知fn(x)在x=
处取得最大值,由此能求出an=
,n∈N*.
(Ⅱ)当n≥2时,欲证
≤
,只需证明(n+3)(1+
)n≥27即可.
(Ⅲ)当n=1时,结论成立,当n≥2时,由(II)的结论利用放缩法能证明对任意正整数n,都有Sn≤
成立.
| f | ′ n |
| n |
| n+3 |
| n |
| n+3 |
| 27nn |
| (n+3)n+3 |
(Ⅱ)当n≥2时,欲证
| 27nn |
| (n+3)n+3 |
| 1 |
| (n+3)2 |
| 3 |
| n |
(Ⅲ)当n=1时,结论成立,当n≥2时,由(II)的结论利用放缩法能证明对任意正整数n,都有Sn≤
| 91 |
| 256 |
解答:
(本小题满分13分)
(Ⅰ)解:∵fn(x)=xn(1-x)3,
∴f′n(x)=nxn-1(1-x)3-3xn(1-x)2=xn-1(1-x)2[n(1-x)-3x]
=xn-1(1-x)2[n-(n+3)x],
当x∈[
,1]时,由
(x)=0,知x=1或x=
,
当n=1时,则
=
,
x∈[
,1]时,
(x)<0,fn(x)=xn(1-x)3在[
,1]上单调递减,
∴a1=f1(
)=
×(1-
)3=
当n≥2时,
∈(
,1),x∈[
,
)时,
(x)>0,x∈(
,1)时,
(x)<0,
∴fn(x)在x=
处取得最大值,
即an=(
)n(
)3=
,
∴综上所述,an=
,n∈N*.
(Ⅱ)当n≥2时,欲证
≤
,
只需证明(n+3)(1+
)n≥27,
∵(1+
)n=
+
(
)+
(
)2+…+
(
)n
≥1+3+
•
=4+
(1-
)
≥4+
(1-
)=
.
∴(n+3)(1+
)n≥5×
>27.
∴当n≥2时,都有an≤
成立.
(Ⅲ)当n=1时,结论成立,
当n≥2时,由(II)知Sn=
+a2+a3+a4+…+an<
+
+
+…+
<
+(
-
)+(
-
)+…+(
-
)<
+
=
.
所以,对任意正整数n,都有Sn<
成立.
(Ⅰ)解:∵fn(x)=xn(1-x)3,
∴f′n(x)=nxn-1(1-x)3-3xn(1-x)2=xn-1(1-x)2[n(1-x)-3x]
=xn-1(1-x)2[n-(n+3)x],
当x∈[
| 1 |
| 4 |
| f | ′ n |
| n |
| n+3 |
当n=1时,则
| n |
| n+3 |
| 1 |
| 4 |
x∈[
| 1 |
| 4 |
| f | ′ n |
| 1 |
| 4 |
∴a1=f1(
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
| 33 |
| 44 |
当n≥2时,
| n |
| n+3 |
| 1 |
| 4 |
| 1 |
| 4 |
| n |
| n+3 |
| f | ′ n |
| n |
| n+3 |
| f | ′ n |
∴fn(x)在x=
| n |
| n+3 |
即an=(
| n |
| n+3 |
| 3 |
| n+3 |
| 27nn |
| (n+3)n+3 |
∴综上所述,an=
| 27nn |
| (n+3)n+3 |
(Ⅱ)当n≥2时,欲证
| 27nn |
| (n+3)n+3 |
| 1 |
| (n+3)2 |
只需证明(n+3)(1+
| 3 |
| n |
∵(1+
| 3 |
| n |
| C | 0 n |
| C | 1 n |
| 3 |
| n |
| C | 2 n |
| 3 |
| n |
| C | n n |
| 3 |
| n |
≥1+3+
| n(n+1) |
| 2 |
| 9 |
| n2 |
=4+
| 9 |
| 2 |
| 1 |
| n |
≥4+
| 9 |
| 2 |
| 1 |
| 2 |
| 25 |
| 4 |
∴(n+3)(1+
| 3 |
| n |
| 25 |
| 4 |
∴当n≥2时,都有an≤
| 1 |
| (n+3)2 |
(Ⅲ)当n=1时,结论成立,
当n≥2时,由(II)知Sn=
| 27 |
| 256 |
| 27 |
| 256 |
| 1 |
| 52 |
| 1 |
| 62 |
| 1 |
| (n+3)2 |
| 27 |
| 256 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 6 |
| 1 |
| n+2 |
| 1 |
| n+3 |
| 27 |
| 256 |
| 1 |
| 4 |
| 91 |
| 256 |
所以,对任意正整数n,都有Sn<
| 91 |
| 256 |
点评:本题考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意导数的性质和放缩法的合理运用.
练习册系列答案
相关题目