题目内容

3.下列说法正确的是(  )
A.光伏发电是将化学能转化为电能
B.钢铁吸氧腐蚀正极的电极反应式是O2+4e-+2H2O=4OH-
C.通过电解NaCl水溶液的方法生产金属钠
D.铅蓄电池的负极材料是Pb,正极材料是PbSO4

分析 A.光伏发电是将光能转化为电能;
B.铁发生吸氧腐蚀时,正极上氧气得电子发生还原反应;
C.工业上采用电解熔融氯化钠的方法冶炼钠;
D.铅蓄电池的负极材料是Pb,正极材料是PbO2

解答 解:A.光伏发电是将光能转化为电能,不属于原电池原理,故A错误;
B.铁发生吸氧腐蚀时,正极上氧气得电子发生还原反应,正极反应式为O2+4e-+2H2O=4OH-,故B正确;
C.工业上采用电解熔融氯化钠的方法冶炼钠,如果电解氯化钠溶液时,阴极上氢离子放电生成氢气而得不到Na,故C错误;
D.铅蓄电池的负极材料是Pb,正极材料是PbO2,故D错误;
故选B.

点评 本题考查原电池原理、金属腐蚀与防护、金属冶炼等知识点,为高频考点,侧重考查学生分析判断能力,明确原电池原理及金属性质是解本题关键,会根据金属活泼性强弱选取金属的冶炼方法,难点是电极反应式的书写.

练习册系列答案
相关题目
11.随着科技的进步,合理利用资源、保护环境成为当今社会关注的焦点.
(1)为了提高煤的燃烧效率,常采取的措施是将煤转化为清洁气体燃料--水煤气.
已知:H2(g)+1/2O2(g)═H2O(g)△H1=-241.8kJ•mol-1
C(s)+1/2O2 (g)═CO(g)△H2=-110.5kJ•mol-1
则焦炭与水蒸气反应生成水煤气的热化学方程式为C(s)+H2O(g)═CO(g)+H2(g);△H=+13l.30kJ•mol-1
(2)工业上利用水煤气合成甲醇燃料,反应为CO(g)+2H2(g) $\stackrel{催化剂}{?}$CH3OH(g)△H<0.在一定条件下,将l mol CO和2mol H2通入密闭容器中进行反应,当改变某一外界条件(温度或压强)时,CH3OH的体积分数φ(CH3OH)变化趋势如图1所示:

①平衡时,M点CH3OH的体积分数为10%.则CO的转化率为25%.
②X轴上a点的数值比b点小(填“大”或“小”).Y轴表示温度(填“温度”或“压强”),判断的理由是随着Y值的增加,CH3OH的体积分数φ(CH3OH)减小,平衡逆向移动,故Y表示温度.
(3)在一定温度下,将2mol CO和4mol也充入某恒容密闭容器中发生反应:CO(g)+2H2(g) $\stackrel{催化剂}{?}$CH3OH(g),达到平衡时测得CO的转化率为50%,已知反应初始时容器的容积为2L,则该温度下,反应的平衡常数K=1.
(4)在合成水煤气时会产生一定量的CO2,在强酸性电解质溶液中,用惰性电极电解可使CO2转化成乙烯,如图2所示.电解时阴极的电极反应式为2CO2+12H++12e-=C2H4+4H2O.当阳极产生l mol气体时,则阳极溶液的质量减轻36 g.
18.(一)Fenton法常用于处理含有难降解有机物的工业废水,通常是在调节好pH和Fe2+浓度的废水中加入H2O2,所产生的羟基自由基能氧化降解污染物.现运用该方法降解有机污染物p-CP,探究有关因素对该降解反应速率的影响.实验中控制p-CP的初始浓度相同,恒定实验温度在298K或313K下设计如下对比实验(其余实验条件见下表):
实验序号实验目的T/KpHc/10-3mol•L-1
H2O2Fe2+
为以下实验作参照物29836.00.30
探究温度对降解反应速率的影响31336.00.30
298106.00.30
(1)编号③的实验目的是探究pH对降解速率的影响.
(2)实验测得不同实验编号中p-CP的浓度随时间变化的关系如图所示.请根据实验①曲线,计算降解反应在50-300s内的平均反应速率v(p-CP)=4.8×10-6mol•L-1•s-1
(3)实验①②表明,温度与该降解反应速率的关系是温度越高,降解反应速率越快.
(二)已知Fe3+和I-在水溶液中的反应为2I-+2Fe3+=2Fe2++I2.正向反应速率和I-、Fe3+的浓度关系为v=kcm(I-)cn(Fe3+)(k为常数)
(4)请分析下表提供的数据回答以下问题:
c(I-)/(mol•L-1c(Fe3+)/(mol•L-1v/(mol•L-1•s-1
(1)0.200.800.032k
(2)0.600.400.144k
(3)0.800.200.128k
①在v=kcm(I-)cn(Fe3+)中,m、n的值为C.(选填A、B、C、D)
A.m=1,n=1        B.m=1,n=2       C.m=2,n=1    D.m=2,n=2
②I-浓度对反应速率的影响>Fe3+浓度对反应速率的影响(填“<”、“>”或“=”).
(三)一定温度下,反应FeO(s)+CO(g)?Fe(s)+CO2(g)的化学平衡常数为3.0,该温度下将2mol FeO、4mol CO、5mol Fe、6mol CO2加入容积为2L的密闭容器中反应.请通过计算回答:
(5)v(正)>v(逆)(填“>”、“<”或“=”);若将5mol FeO、4mol CO加入同样的容器中,在相同温度下达到平衡,则CO的平衡转化率为75%.
15.氮的固定意义重大,氮肥的大面积使用提高了粮食产量.
(1)目前人工固氮有效且有意义的方法是N2+3H2$\frac{\underline{\;\;催化剂\;\;}}{高温高压}$2NH3(用一个化学方程式表示).
(2)自然界发生的一个固氮反应是N2(g)+O2(g)$\frac{\underline{\;放电\;}}{\;}$2NO(g),已知N2、O2、NO三种分子中化学键断裂所吸收的能量依次为946kJ•mol-1、498kJ•mol-1、632kJ•mol-1,则该反应的△H=+180kJ•mol-1
(3)恒压100kPa时,反应2NO(g)+O2(g)?2NO2(g)中NO的平衡转化率与温度的关系曲线如图1,反应2NO2(g)?N2O4(g)中NO2的平衡转化率与温度的关系曲线如图2.
①图1中A、B、C三点表示不同温度、压强下2NO(g)+O2(g)?2NO2(g)达到平衡时NO的转化率,则B点对应的压强最大.
②恒压100kPa、25℃时,2NO2(g)?N2O4(g)平衡体系中N2O4的物质的量分数为66.7%,列式计算平衡常数Kp=$\frac{100kpa×66.7%}{[100kpa×(1-66.7%)]^{2}}$.(Kp用平衡分压代替平衡浓度计算,分压=总压×物质的量分数)
(4)室温下,用注射器吸入一定量NO2气体,将针头插入胶塞密封,然后迅速将气体体积压缩为原来的一半并使活塞固定,此时手握针筒有热感,继续放置一段时间.从活塞固定时开始观察,气体颜色逐渐变浅(填“变深”或“变浅”),原因是活塞固定时2NO2(g)?N2O4(g)已达平衡状态,因反应是放热反应,放置时气体温度下降,平衡向正反应方向移动,NO2浓度降低.[已知2NO2(g)?N2O4(g)在几微秒内即可达到化学平衡].

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网