在△ABC中,AB =AC,∠A=80°,则∠B=__________.

50° 【解析】∵AB=AC, ∴根据轴对称的性质,将线段BC对折重合后,点A在折痕上, ∴线段AB、AC关于折痕轴对称, 设折痕与BC交点为D, 则△ABD、△ACD关于直线AD轴对称, ∴∠B=∠C =(180°-∠A)÷2=(180°-80°)÷2=50°. 故答案为:50°.

已知M、N是线段AB的垂直平分线上任意两点,则∠MAN和∠MBN之间关系是____.

∠MAN=∠MBN 【解析】∵原题当中没有说明点M、N在线段AB的位置, ∴可能有以下四种情况: ①如图①,点M、N在线段AB两侧时, ∵M、N是线段AB的垂直平分线上任意两点, ∴点A、B两点关于直线MN轴对称, ∴线段MA、MB两点关于直线MN轴对称, 同理线段NA、NB两点关于直线MN轴对称, ∴△MAN与△MBN关于直线MN轴对称, ∴...

如图1,在一条河同一岸边有A和B两个村庄,要在河边修建码头M,使M到A和B的距离之和最短,试确定M的位置;

见解析 【解析】试题分析:利用轴对称,作点A关于直线l的对称点A′,连接A′B交直线l于点M,则点M即为所求点. 试题解析:所求点如下图所示: ∵两点之间线段最短, ∴需要能将AM、BM两边转化到一条直线上, ∴用轴对称可以办到, 求点M的位置的具体步骤如下: ①作作点A关于直线BC的轴对称点A’, ②连结A’B交BC于点M, ③连结AM, ...

圆、长方形、正方形都是轴对称图形,说出他们分别有几条对称轴.

圆、长方形、正方形的对称轴的数量分别是无数条、2条、4条 【解析】试题分析:依据轴对称图形的概念,即在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线就是这个轴对称图形的对称轴,据此即可解答. 试题解析:∵对于圆来说,过圆心的任意一条直线,都能够将这个圆分成能够互相重合的两部分 ∴过圆心的直线,都是圆的对称轴, ∴圆有无数条...

已知等腰三角形的一边长等于4cm,一边长等于9cm,求它的周长.

22cm 【解析】试题分析:分情况讨论即可; 试题解析:分两种情况: 若腰长为4,4+4<9,不能构成三角形; 若腰长为9,9-9<4,能构成三角形,9+9+4=22, 答:周长是22cm.

如图,长方形ABCD中,AB=2,点E在BC上并且AE=EC,若将矩形纸片沿AE折叠,使点B恰好落在AC上,则AC的长为多少?

4 【解析】试题分析:根据折叠的性质及等边对等角的性质,可得到∠BAE=∠EAC=∠ECA,根据三角形内角和定理即可求得∠ECA的度数,再根据直角三角形的性质不难求得AC的长. 试题解析:如图,设点B落在AC上后,为点F. 则有△AFE≌△ABE, ∴∠AFE =∠B =90° ,AF =AB =2, ∴FE⊥AC, ∵AE=EC, ∴CF =AF =2,...

下列各式从左到右的变形中,是因式分解的是( ).

A. x(a-b)=ax-bx B. x2-1+y2=(x-1)(x+1)+y2

C. y2-1=(y+1)(y-1) D. ax+bx+c=x(a+b)+c

C 【解析】A. 是整式的乘法,故A错误; B. 没把一个多项式转化成几个整式积,故B错误; C. 把一个多项式转化成几个整式积,故C正确; D. 没把一个多项式转化成几个整式积,故D错误; 故选:C.

将多项式-6a3b2-3a2b2+12a2b3分解因式时,应提取的公因式是(  )

A.-3a2b2 B.-3ab C.-3a2b D.-3a3b3

A 【解析】 在找公因式时,一找系数的最大公约数,二找相同字母的最低次幂.同时注意首项系数通常要变成正数.

下列各式是完全平方式的是(  )

A. x2+2x﹣1 B. 1+x2 C. x2+xy+1 D. x2﹣x+0.25

D 【解析】A. x2+2x﹣1两个平方项的符号不一致,不是完全平方式; B. 1+x2缺少两倍的项,不是完全平方式; C. x2+xy+1缺少两倍的项,不是完全平方式; D. x2﹣x+0.25=(x-0.5)2,是完全平方式; 故选D.
 0  322194  322202  322208  322212  322218  322220  322224  322230  322232  322238  322244  322248  322250  322254  322260  322262  322268  322272  322274  322278  322280  322284  322286  322288  322289  322290  322292  322293  322294  322296  322298  322302  322304  322308  322310  322314  322320  322322  322328  322332  322334  322338  322344  322350  322352  322358  322362  322364  322370  322374  322380  322388  366461 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网