题目内容

如图1,在一条河同一岸边有A和B两个村庄,要在河边修建码头M,使M到A和B的距离之和最短,试确定M的位置;

见解析 【解析】试题分析:利用轴对称,作点A关于直线l的对称点A′,连接A′B交直线l于点M,则点M即为所求点. 试题解析:所求点如下图所示: ∵两点之间线段最短, ∴需要能将AM、BM两边转化到一条直线上, ∴用轴对称可以办到, 求点M的位置的具体步骤如下: ①作作点A关于直线BC的轴对称点A’, ②连结A’B交BC于点M, ③连结AM, ...
练习册系列答案
相关题目

已知点A(﹣1,﹣2),点B(1,4)

(1)试建立相应的平面直角坐标系;

(2)描出线段AB的中点C,并写出其坐标;

(3)将线段AB沿水平方向向右平移3个单位长度得到线段A1B1,写出线段A1B1两个端点及线段中点C1的坐标.

(1)见解析;(2)C(0,1);(3)平移规律是(x+3,y),所以A1(2,﹣2),B1(4,4),C1(3,1). 【解析】试题分析:画出平面直角坐标系后描出线段AB的中点C,根据平移的规律求出线段A1B1两个端点及线段中点C1的坐标为A1(2,﹣2),B1(4,4),C1(3,1). 试题解析:【解析】 (1)坐标系如图: (2)C(0,1); (3)平移规律是(...

二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx+m=0有实数根,则m的最大值为(  )

A. -3 B. 3 C. -6 D. 9

B 【解析】先根据抛物线的开口向上可知a>0,由顶点纵坐标为-3得出b与a关系,再根据一元二次方程ax2+bx+m=0有实数根可得到关于m的不等式,求出m的取值范围即可. 【解析】 ∵抛物线的开口向上,顶点纵坐标为-3, ∴a>0, =-3,即b2=12a, ∵一元二次方程ax2+bx+m=0有实数根, ∴△=b2-4am≥0,即12a-4am≥0,即12-4m≥0,解得m≤3...

5x2﹣25x2y的公因式为__.

5x2 【解析】∵5x2﹣25x2y=5x2(1-y), ∴5x2﹣25x2y的公因式为5x2.

下列各式从左到右的变形中,是因式分解的是( ).

A. x(a-b)=ax-bx B. x2-1+y2=(x-1)(x+1)+y2

C. y2-1=(y+1)(y-1) D. ax+bx+c=x(a+b)+c

C 【解析】A. 是整式的乘法,故A错误; B. 没把一个多项式转化成几个整式积,故B错误; C. 把一个多项式转化成几个整式积,故C正确; D. 没把一个多项式转化成几个整式积,故D错误; 故选:C.

等腰三角形的对称轴是______.

顶角平分线所在直线 【解析】一个图形沿一条直线对折,直线两旁的部分能够完全重合,那么这个图形就是轴对称图形,这条直线就是这个图形的一条对称轴,如图所示:等腰三角形的对称轴是顶角平分线所在直线. 故答案是:顶角平分线所在直线.

下列图形中,不是轴对称图形的是( )

A. 有两个内角相等的三角形 B. 有一个内角为45°的直角三角形

C. 有两个内角分别为50°和80°的三角形 D. 有两个内角分别为55°和65°的三角形

D 【解析】A.有两个内角相等的三角形是等腰三角形,等腰三角形是轴对称图形; B.有一个内角为45度的直角三角形是等腰直角三角形,也是等腰三角形,是轴对称图形;C.有两个内角分别为50度和80度的三角形,第三个角是50度,故是等腰三角形,是轴对称图形; D.有两个内角分别为55度和65度的三角形,不是等腰三角形,不是轴对称图形. 故选:D.

如图,在△ABC中,∠B≠∠C,求证:AB≠AC.当用反证法证明时,第一步应假设( )

A. ∠B=∠C B. AB=AC C. AB=BC D. ∠A=∠B

B 【解析】试题分析:利用假设法来进行证明时,首先假设结论成立,即AB=AC,故选B.

如图,从地面竖直向上抛出一个小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的关系式为h=30t-5t2,那么小球从抛出至回落到地面所需要的时间是(  )

A. 6s B. 4s C. 3s D. 2s

A 【解析】试题分析:由小球高度h与运动时间t的关系式h=30t﹣5t2,令h=0,解得的两值之差便是所要求得的结果. 由小球高度h与运动时间t的关系式h=30t﹣5t2. 令h=0,﹣5t2+30t=0 解得:t1=0,t2=6 △t=6,小球从抛出至回落到地面所需要的时间是6秒.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网