如图所示,根据图形把多项式a2+5ab+4b2因式分解=__.

(a+b)(a+4b) 【解析】由图可知, a2+5ab+4b2=(a+b)(a+4b).

因式分【解析】

(1)20a3﹣30a2

(2)16﹣(2a+3b)2

(3)﹣16x2y2+12xy3z

(4)5x2y﹣25x2y2+40x3y

(5)x2(a﹣b)2﹣y2(b﹣a)2

(6)(a2+b2)2﹣4a2b2

(7)18b(a﹣b)2+12(b﹣a)3

(8)x(x2+1)2﹣4x3

(9)(x2﹣2x)2﹣3(x2﹣2x)

(10)(2x﹣1)2﹣6(2x﹣1)+9

(11)16x4﹣72x2y2+81y4

(12)a5﹣a

(13)25(x+y)2﹣9(x﹣y)2

(14)m2﹣3m﹣28

(15)x2+x﹣20.

(1)10a2(2a﹣3);(2)(4+2a+3b)(4﹣2a﹣3b); (3)﹣4xy2(4x﹣3yz); (4)5x2y(1﹣5y+8x); (5)(a﹣b)2(x+y)(x﹣y); (6)(a+b)2(a﹣b)2; (7)6(b﹣a)2(5b﹣2a); (8)x(x+1)2(x﹣1)2; (9)x(x﹣2)(x﹣3)(x+1); (10)4(x...

利用分解因式计算:

(1)2022+202×196+982

(2)(﹣2)100+(﹣2)100.

(1)90000;(2)2101. 【解析】试题分析:(1)通过观察,显然符合完全平方公式,利用完全平方公式分解因式计算. (2)利用提取公因式法进行因式分解进行计算. 【解析】 (1)原式=2022+2×202×98+982 =(202+98)2 =3002 =90000. (2)原式=(﹣2)100×(1+1)=2101.

如图,已知二次函数y=ax2+bx+c的部分图象,由图象可知关于x的一元二次方程ax2+bx+c=0的两个根分别是x1=1.6,x2=( )

A. -1.6 B. 3.2 C. 4.4 D. 以上都不对

C 【解析】根据图象知道抛物线的对称轴为x=3,根据抛物线是轴对称图象和已知条件即可求出x2. 【解析】 由抛物线图象可知其对称轴为x=3, 又抛物线是轴对称图象, ∴抛物线与x轴的两个交点关于x=3对称, 而关于x的一元二次方程ax2+bx+c=0的两个根分别是x1,x2, 那么两根满足2×3=x1+x2, 而x1=1.6, ∴x2=4.4. ...

如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c<0的解集是(  )

A. -1<x<5 B. x>5 C. x<-1且x>5 D. x<-1或x>5

D 【解析】由图可知,抛物线的对称轴为直线x=2,与x轴的一个交点坐标为(5,0), ∴函数图象与x轴的另一交点坐标为(-1,0), ∴ax2+bx+c<0的解集是x<-1或x>5. 故选C.

二次函数y= -x2+2x+k的部分图象如图所示,则关于x的一元二次方程-x2+2x+k=0的一个解x1=3,另一个解x2=(  )

A. 1 B. -1 C. -2 D. 0

B 【解析】试题分析:先把x1=3代入关于x的一元二次方程﹣x2+2x+k=0,求出k的值,再根据根与系数的关系即可求出另一个解x2的值. 【解析】 ∵把x1=3代入关于x的一元二次方程﹣x2+2x+k=0得, ﹣9+6+k=0,解得k=3, ∴原方程可化为:﹣x2+2x+3=0, ∴x1+x2=3+x2=﹣=2,解得x2=﹣1. 故选B.

如图,已知抛物线与x轴的一个交点A(1,0),对称轴是x= -1,则该抛物线与x轴的另一交点坐标是(  )

A. (-3,0) B. (-2,0) C. x= -3 D. x= -2

A 【解析】抛物线与x轴的另一交点为B(b,0), ∵抛物线与x轴的一个交点A(1,0),对称轴是x=-1,∴=-1, 解得b=-3,∴B(-3,0).

抛物线y=ax2+bx+c(a≠0)与x轴的交点是(-2,0)和(4,0),这条抛物线的对称轴是(  )

A. 直线x=1 B. 直线x= -1 C. 直线x=2 D. 直线x= -2

A 【解析】∵抛物线y=ax2+bx+c(a≠0)与x轴的交点是(-2,0)和(4,0), ∴这条抛物线的对称轴是:x=,即x=1; 故选:A.

若x1,x2(x1<x2)是方程(x-a)(x-b)=1(a<b)的两个根,则实数x1,x2,a,b的大小关系为(  )

A. x1<x2<a<b B. x1<a<x2<b

C. x1<a<b<x2 D. a<x1<b<x2

C 【解析】试题分析:用作图法比较简单,首先作出(x﹣a)(x﹣b)=0图象,随便画一个(开口向上的,与x轴有两个交点),再向下平移一个单位,就是(x﹣a)(x﹣b)=1,这时与x轴的交点就是x1,x2,画在同一坐标系下,很容易发现:答案是:x1<a<b<x2. 故选:C.

已知抛物线y=ax2-2x+1与x轴没有交点,那么该抛物线的顶点所在的象限是( )

A. 第四象限 B. 第三象限 C. 第二象限 D. 第一象限

D 【解析】∵抛物线y=ax2-2x+1与x轴没有交点, ∴△=4-4a<0, 解得a>1, ∴抛物线的开口向上, 又∵b=-2, ∴ >0, ∴抛物线的对称轴在y轴的右侧, ∴抛物线的顶点在第一象限. 故选D.
 0  322192  322200  322206  322210  322216  322218  322222  322228  322230  322236  322242  322246  322248  322252  322258  322260  322266  322270  322272  322276  322278  322282  322284  322286  322287  322288  322290  322291  322292  322294  322296  322300  322302  322306  322308  322312  322318  322320  322326  322330  322332  322336  322342  322348  322350  322356  322360  322362  322368  322372  322378  322386  366461 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网