分解因式: =____________________.

【解析】1-x+x2=-x+1=( -1)2, 故答案为: .

如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为(  )

A. 2 B. 3 C. 4 D. 5

A 【解析】由B点平移前后的纵坐标分别为1,2,可得B点向上平移了1个单位,由A点平移前后的横坐标分别是为2,3,可得A点向右平移了1个单位,由此得线段AB的平移的过程是:向上平移1个单位,再向右平移1个单位,所以点A,B均按此规律平移,由此可得a=0+1=1,b=0+1=1,故a+b=2,故选:A.

二次函数y= -x2+2x+k的部分图象如图所示,则关于x的一元二次方程-x2+2x+k=0的一个解x1=3,另一个解x2=(  )

A. 1 B. -1 C. -2 D. 0

B 【解析】试题分析:先把x1=3代入关于x的一元二次方程﹣x2+2x+k=0,求出k的值,再根据根与系数的关系即可求出另一个解x2的值. 【解析】 ∵把x1=3代入关于x的一元二次方程﹣x2+2x+k=0得, ﹣9+6+k=0,解得k=3, ∴原方程可化为:﹣x2+2x+3=0, ∴x1+x2=3+x2=﹣=2,解得x2=﹣1. 故选B.

a2﹣2ab+b2、a2﹣b2的公因式是__.

a﹣b 【解析】∵a2﹣2ab+b2=(a-b)2、a2﹣b2=(a+b)(a-b), ∴a2﹣2ab+b2、a2﹣b2的公因式是a-b.

将多项式-6a3b2-3a2b2+12a2b3分解因式时,应提取的公因式是(  )

A.-3a2b2 B.-3ab C.-3a2b D.-3a3b3

A 【解析】 在找公因式时,一找系数的最大公约数,二找相同字母的最低次幂.同时注意首项系数通常要变成正数.

有两条或两条以上对称轴的轴对称图形是( )

A. 等腰三角形 B. 角 C. 等边三角形 D. 锐角三角形

C 【解析】A.等腰三角形只有一条对称轴; B.角也只有一条对称轴,是角平分线所在的直线; C.等边三角形有三条对称轴; D.锐角三角形的对称轴数量不确定. 故选:C

某工厂在生产过程中要消耗大量电能,消耗每千度电产生利润与电价是一次函数关系,经过测算,工厂每千度电产生利润y(元/千度))与电价x(元/千度)的函数图象如图:

(1)当电价为600元/千度时,工厂消耗每千度电产生利润是多少?

(2)为了实现节能减排目标,有关部门规定,该厂电价x(元/千度)与每天用电量m(千度)的函数关系为x=10m+500,且该工厂每天用电量不超过60千度,为了获得最大利润,工厂每天应安排使用多少度电?工厂每天消耗电产生利润最大是多少元?

(1)工厂消耗每千度电产生利润是180元(2)当工厂每天消耗50千度电时,工厂每天消耗电产生利润为5000元 【解析】试题分析:(1)设y=kx+b(k≠0),利用待定系数法求一次函数解析式解答即可; (2)根据利润=每天的用电量×每千度电产生利润y,然后整理得到W与m的关系式,再根据二次函数的最值问题解答. 【解析】 (1)设工厂每千度电产生利润y(元/千度)与电价x(元/千...

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网