如图所示是二次函数y=ax2﹣x+a2﹣1的图象,则a的值是( )

A. a=﹣1 B. a= C. a=1 D. a=1或a=﹣1

C 【解析】由图象得,此二次函数过原点(0,0), 把点(0,0)代入函数解析式得a2-1=0,解得a=±1; 又因为此二次函数的开口向上,所以a>0; 所以a=1. 故选C.

如图,坐标平面上,二次函数y=﹣x2+4x﹣k的图形与x轴交于A、B两点,与y轴交于C点,其顶点为D,且k>0.若△ABC与△ABD的面积比为1:4,则k值为何?( )

A. 1 B. C. D.

D 【解析】试题分析:∵y=﹣x2+4x﹣k=﹣(x﹣2)2+4﹣k,∴顶点D(2,4﹣k),C(0,﹣k),∴OC=k,∵△ABC的面积=AB•OC=AB•k,△ABD的面积=AB(4﹣k),△ABC与△ABD的面积比为1:4,∴k=(4﹣k),解得:k=.故选D.

在同一平面坐标系中,函数y=mx+m和y=﹣mx2+2x+2(m是常数,且m≠0)的图象可能是(  )

A. B. C. D.

D 【解析】A.由函数y=mx+m的图象可知m<0,即函数y=?mx2+2x+2开口方向朝上,与图象不符,故A选项错误; B.由函数y=mx+m的图象可知m<0,对称轴为x=<0,则对称轴应在y轴左侧,与图象不符,故B选项错误; C.由函数y=mx+m的图象可知m>0,即函数y=?mx2+2x+2开口方向朝下,与图象不符,故C选项错误; D.由函数y=mx+m的图象可知m<...

如图所示的抛物线是二次函数y=+bx+c(a≠0)的图象,则下列结论:①abc>0;②b+2a=0;③抛物线与x轴的另一个交点为(4,0);④a+c>b,其中正确的结论有( ).

A.1个 B.2个 C.3个 D.4个

C. 【解析】 试题分析:∵抛物线开口向上,∴a>0,∵抛物线的对称轴为直线x==1,∴b=﹣2a<0,所以②正确;∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc>0,所以①正确;∵点(﹣2,0)关于直线x=1的对称点的坐标为(4,0),∴抛物线与x轴的另一个交点坐标为(4,0),所以③正确;∵x=﹣1时,y<0, 即a﹣b+c<0,∴a+c<b,所以④错误. 故选:C...

已知抛物线y=x2+bx+c的部分图象如图所示,若y<0,则x的取值范围是(     )

A. -1<x<4 B. -1<x<3 C. x<-1或x>4 D. x<-1或x>3

B 【解析】由图象知,抛物线与x轴交于(-1,0),对称轴为x=1, ∴抛物线与x轴的另一交点坐标为(3,0), ∵y<0时,函数的图象位于x轴的下方, 且当-1<x<3时函数图象位于x轴的下方, ∴当-1<x<3时,y<0. 故选B.

如图,小姚身高m在某次投篮中,球的运动路线是抛物线的一部分,若命中篮圈中心,则他与篮底的距离是( )

A. 3.5m B. 4m C. 4.5m D. 4.6m

B 【解析】试题分析:分别求出当y=3.05和当y=时的x的值,前面那个取正数,后面的那个取负数,然后计算它们之间的距离.

二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象经过(  )

A. 第一、二、三象限 B. 第一、二、四象限

C. 第二、三、四象限 D. 第一、三、四象限

C 【解析】试题分析:根据抛物线的顶点在第四象限,得出n<0,m<0,即可得出一次函数y=mx+n的图象经过二、三、四象限. 故选C.

已知抛物线的解析式为y=(x-2)2+1,则这条抛物线的顶点坐标是( ).

A. (﹣2,1) B. (2,1) C. (2,﹣1) D. (1,2)

B 【解析】根据顶点式y=(x-h)2+k的顶点为(h,k),由y=(x-2)2+1为抛物线的顶点式,顶点坐标为(2,1). 故选:B.

已知:在△ABC中,BC=10,BC边上的高h=5,点E在边AB上,过点E作EF∥BC,交AC边于点F.点D为BC上一点,连接DE、DF.设点E到BC的距离为x,则△DEF的面积S关于x的函数图象大致为( )

A. B. C. D.

D 【解析】试题分析:∵EF∥BC, ∴△AEF∽△ABC, ∴, ∴EF=•10=10﹣2x, ∴S=(10﹣2x)•x=﹣x2+5x=﹣(x﹣)2+, ∴S与x的关系式为S=﹣(x﹣)2+(0<x<5), 纵观各选项,只有D选项图象符合. 故选D.

如果函数y=(k-3)+kx+1是二次函数,那么k的值一定是

0. 【解析】试题解析:由题意得:k2-3k+2=2, 解得k=0或k=3; 又∵k-3≠0, ∴k≠3. ∴当k=0时,这个函数是二次函数.
 0  322158  322166  322172  322176  322182  322184  322188  322194  322196  322202  322208  322212  322214  322218  322224  322226  322232  322236  322238  322242  322244  322248  322250  322252  322253  322254  322256  322257  322258  322260  322262  322266  322268  322272  322274  322278  322284  322286  322292  322296  322298  322302  322308  322314  322316  322322  322326  322328  322334  322338  322344  322352  366461 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网